| BIM F@RU | JM LC | DD Specif | ication 2020 | Part II | | 1 | | | | | | | | | 1 | П | | | Γ |] | | | | Γ | |----------|-------|------------------|-------------------------------------|---|--|-----|------|-------|-----|------|-------|-----|-----------|---|------------|----------|-----|-----------|-------|-----|-----------|-----------|----------|-------| | 5 | | This work is lic | censed under the Cre | eative Commons | Milestones shown here are examples only -> | > | SD | | | DD | | | CD | | Estimating | <u> </u> | Es | stimating | | L | EED Cert. | | LEED Cer | rt | | NO P | ; | | onCommercial 4.0 Int | | , | | | | | | | | | | Est. 1 | | | Bid Pkg. | | | Check | | Submitta | | | eak | is | | | | | | Date | | | Date | | | Date | | Date | | | Date | | | Date | | Date | | | Pa Pa | | UNIFORMAT | | SYSTEM/COMPONENT INFORMATION | RELEVANT ATTRIBUTE TABLES | LOD | MEA | Notes | LOD | MEA | Notes | LOD | MEA Notes | | LOD MEA N | otes | LOD | MEA I | Notes | LOD | MEA No | otes | LOD MEA | Notes | | 1 | | | 36-51 | OFFICE RESOURCES | 2 | | | 36-51 73 | Office Model Templates | 3 4 | | | 36-51 73 11 | Model Content Model Annotation Content | 5 | | | 36-51 73 11 13
36-51 73 11 13 11 | Properties Properties | 6 | | | 36-51 73 11 13 11 | 5 | | | 36-51 73 11 13 17 | 6 | | | 36-51 73 11 13 17 13 | | | | | | | | | | l e | | | | | | | | | | | | | 6 | | | 36-51 73 11 13 17 13 | ELEMENTS | 1 | | А | 21-01 00 00 | SUBSTRUCTURE | 2 | | | 21-01 10 | Foundations | A, B Concrete; A, B Wood; A, B Masonry; A, B Precast | Concrete | 3 | | A1010 | 21-01 10 10 | Standard Foundations | A, B Concrete; A, B Wood; A, B Masonry; A, B Precast | Concrete | 4 | | A1010.10 | 21-01 10 10 10 | Wall Foundations | A, B Concrete; A, B Wood; A, B Masonry; A, B Precast | 4 | | A1010.30 | 21-01 10 10 30 | Column Foundations | Concrete A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete | 4 | | A1010.90 | 21-01 10 10 90 | Standard Foundation Supplementary Components | Concrete | 3 | | A1020 | 21-01 10 20 | Special Foundations | A, B Concrete; A, B Wood; A, B Masonry; A, B Precast Concrete | 4 | | | 21-01 10 20 10 | Driven Piles | 4 | | | 21-01 10 20 15 | Bored Piles | 4 | | | 21-01 10 20 20 | Caissons | 4 | | | 21-01 10 20 30 | Special Foundation Walls | 4 | | | 21-01 10 20 40 | Foundation Anchors | | | | | | | | | | | | - | | | | | | | | | | 4 | | | 21-01 10 20 50
21-01 10 20 60 | Underpinning Raft Foundations | | | | | | | - | | | | | | | | | | | | | | | 4 | | | 21-01 10 20 60 | Pile Caps | 4 | | | 21-01 10 20 80 | Grade Beams | A, B Concrete; A, B Wood; A, B Masonry; A, B Precast
Concrete | 2 | | A20 | 21-01 20 | Subgrade Enclosures | A, B Concrete; A, B Wood; A, B Masonry; A, B Precast
Concrete | 3 | | | 21-01 20 10 | Walls for Subgrade Enclosures | A, B Concrete; A, B Wood; A, B Masonry; A, B Precast
Concrete | 4 | | | 21-01 20 10 10 | Subgrade Enclosure Wall Construction | 4 | | | 21-01 20 10 20 | Subgrade Enclosure Wall Interior Skin | 4 | | A2010.90 | 21-01 20 10 90 | Subgrade Enclosure Wall Supplementary Components | 2 | | A40 | 21-01 40 | Slabs-on-Grade | A, B - Str. Concrete | 3 | | | 21-01 40 10 | Standard Slabs-on-Grade | A, B Concrete | 3 | | | 21-01 40 20 | Structural Slabs-on-Grade | A, B Concrete | 3 | | | 21-01 40 30 | Slab Trenches | 3 | | | 21-01 40 40 | Pits and Bases | | | | | | | | | | - | | | | | | | | - $+$ $+$ | | | | 3 | | | 21-01 40 90 | SlabOn-Grade Supplementary Components | | | | | | | | | | - | | | | | | | | | | | | 4 | | | 21-01 40 90 10
21-01 40 90 20 | Perimeter Insulation Vapor Retarder | 4 | | | 21-01 40 90 20 | Waterproofing | 4 | | | 21-01 40 90 50 | Mud Slab | 4 | | | 21-01 40 90 60 | Subbase Layer | 2 | | | 21-01 60 | Water and Gas Mitigation | 3 | | | 21-01 60 10 | Building Subdrainage | 4 | | A6010.10 | 21-01 60 10 10 | Foundation Drainage | 4 | | | 21-01 60 10 20 | Underslab Drainage | 3 | | | 21-01 60 20 | Off-Gassing Mitigation | 4 | | | 21-01 60 20 10 | Radon Mitigation | 4 | | | 21-01 60 20 50 | Maethane Mitigation | 2 | | | 21-01 90 | Substructure Related Activities Substructure Excavation | 3 | | A9010 | 21-01 90 10 | SUBSTRUCTURE EXCAVATION | 4 | | 40040.40 | 24 04 00 40 40 | Backfill and Compaction | | | | | | | | |---|--|-------------------|-------------------------------|---|--|--|--|--|--|--|--| | 3 | | A9010.10
A9020 | 21-01 90 10 10
21-01 90 20 | Construction Dewatering | | | | | | | | | | | | | Excavation Support | | | | | | | | | 3 | | | 21-01 90 30 | Anchor Tiebacks | | | | | | | | | 4 | | | 21-01 90 30 10 | Cofferdams | | | | | | | | | 4 | | | 21-01 90 30 20 | Cribbing and Walers | | | | | | | | | 4 | | | 21-01 90 30 40 | | | | | | | | | | 4 | | | 21-01 90 30 60 | Ground Freezing | | | | | | | | | 4 | | | 21-01 90 30 70 | Slurry Walls | | | | | | | | | 3 | | A9040 | 21-01 90 40 | Soil Treatment | | | | | | | | | 1 | | В | 21-02 00 00 | SHELL | | | | | | | | | 2 | | B10 | 21-02 10 | Superstructure | | | | | | | | | 3 | | B1010 | 21-02 10 10 | Floor Construction | A, B Cold Formed Metal Framing; A, B Masonry; A, B | | | | | | | | | | | | | Metal Deck; A, B Precast Concrete; A,B Steel Joist; A, B Structural Steel; | | | | | | | | | | | | | A. B Concrete: A. B Wood | | | | | | | | 4 | | B1010.10 | 21-02 10 10 10 | Floor Structural Frame | | | | | | | | | 5 | | B1010.10.10 | | Concrete | A, B Concrete | | | | | | | | 5 | | B1010.10.11 | | Precast Structural Inverted T Beam | A, B Precast Concrete | | | | | | | | 5 | | B1010.10.12 | | Precast Structural Column | A, B Precast Concrete | | | | | | | | 5 | | B1010.10.20 | | Masonry | A, B Masonry | | | | | | | | 5 | | B1010.10.30 | | Steel Framing Columns | A, B Structural Steel | | | | | | | | 5 | | B1010.10.40 | | Steel Framing Beams | A, B Structural Steel | | | | | | | | 5 | | B1010.10.50 | | Steel Framing Bracing Rods | A, B Structural Steel | | | | | | | | 5 | | B1010.10.60 | | Steel Joists | A,B Steel Joist | | | | | | | | 5 | | B1010.10.70 | | Cold-Formed Metal Framing | A, B Cold Formed Metal Framing | | | | | | | | 5 | | B1010.10.80 | | Wood Floor Trusses | A, B Wood | | | | | | | | 4 | | | 21-02 10 10 20 | Floor Decks, Slabs, and Toppings | .,, | | | | | | | | 5 | | B1010.20.10 | 21-02-10-10-20 | Wood Floor Deck | A, B Wood | | | | | | | | 5 | | B1010.20.10 | | Metal Floor Deck | A, B Metal Deck | | | | | | | | 5 | | B1010.20.20 | | Composite Floor Deck | A, B Structural Steel; A, B Concrete | | | | | | | | | | B1010.20.40 | | Concrete | A, B Concrete | | | | | | | | 5 | | | | Precast Structural Double Tee | A, B Precast Concrete | | | | | | | | 5 | | B1010.20.41 | 24 02 40 40 20 | | A, B Flecast Coliciete | | | | | | | | 4 | | | 21-02 10 10 30 | Balcony Floor Construction | | | | | | | | | 4 | | | 21-02 10 10 40 | Mezzanine Floor Construction | | | | | | | | | 4 | | | 21-02 10 10 50 | Ramps | | | | | | | | | 4 | | B1010.90 | 21-02 10 10 90 | Floor Construction Supplementary Components | | | | | | | | | 3 | | B1020 | 21-02 10 20 | Roof Construction | A, B Cold Formed Metal Framing; A, B Masonry; A, B | | | | | | | | | | 51020 | 21 02 10 20 | | Metal Deck; A, B Precast Concrete; A,B Steel Joist; A, | | | | | | | | | | | | | B Structural Steel; | | | | | | | | _ | | 2400040 | 04 00 40 00 40 | Do of Characterist France | A B Concrete: A B Wood | | | | | | | | 4 | | B1020.10 | 21-02 10 20 10 | Roof Structural Frame | A, B Structural Steel; A, B Concrete; A,B Steel Joist | | | | | | | | 4 | | | 21-02 10 20 20 | Roof Decks, Slabs, and Sheathing | A,B Steel Joist; A, B Metal Deck | | | | | | | | 4 | | | 21-02 10 20 30 | Canopy Construction | | | | | | | | | 4 | | B1020.90 | 21-02 10 20 90 | Roof Construction Supplementary Components | | | | | | | | | 3 | | B1080 | 21-02 10 80 | Stairs | A, B Cold Formed Metal Framing; A, B Masonry; A, B | | | | | | | | | | D1000 | 21 02 10 00 | | Metal Deck; A, B Precast Concrete; A,
B Structural | | | | | | | | | | | | | Steel: A. B Concrete: A. B Wood | | | | | | | | 4 | | B1080.10 | 21-02 10 80 10 | Stair Construction | A, B Structural Steel; A, B Precast Concrete; A, B | | | | | | | | 4 | | D1000 30 | 21 02 10 00 20 | Stair Soffits | Concrete | | | | | | | | 4 | | B1080.30 | 21-02 10 80 30 | | A D Structural Stools A D Dropost Congress A D | | | | | | | | 4 | | B1080.50 | 21-02 10 80 50 | Stair Railings | A, B Structural Steel; A, B Precast Concrete; A, B Concrete | | | | | | | | 4 | | B1080.60 | 21-02 10 80 60 | Fire Escapes | A, B Structural Steel; A, B Precast Concrete; A, B | | | | | | | | • | | | | | Concrete | | | | | | | | 4 | | B1080.70 | 21-02 10 80 70 | Metal Walkways | A, B Structural Steel; A, B Precast Concrete; A, B | | | | | | | | | | D4000 00 | 24 02 40 00 00 | Laddors | Concrete A. P. Structural Stool | | | | | | | | 4 | | | 21-02 10 80 80 | Ladders | A, B Structural Steel | | | | | | | | 2 | | | 21-02 20 | Exterior Vertical Enclosures | 2.5.11/1 | | | | | | | | 3 | | | 21-02 20 10 | Exterior Walls | B – Ext. Wall | | | | | | | | 4 | | | 21-02 20 10 10 | Exterior Wall Veneer | A, B Masonry | | | | | | | | 4 | | | 21-02 20 10 20 | Exterior Wall Construction | A, B Cold Formed Metal Framing; A, B Wood | | | | | | | | 5 | | B2010.20.10 | | Exterior Walls - Wood | | | | | | | | | 5 | | B2010.20.20 | | Exterior Walls - Cold-Form Metal Framing | | | | | | | | | 5 | | B2010.20.30 | | Exterior Walls - Masonry | | | | | | | | | 5 | | B2010.20.40 | | Exterior Walls - Precast Concrete | | | | | | | | | 4 | | B2010.30 | 21-02 20 10 30 | Exterior Wall Interior Skin | | | | | | | | | 4 | | B2010.40 | 21-02 20 10 40 | Fabricated Exterior Wall Assemblies | I- | | | | | | | | |---|--|-------------|----------------|---|---|--|----------|--|--|---|--| | 4 | | | 21-02 20 10 50 | Parapets | | | | | | | | | 4 | | | 21-02 20 10 60 | Equipment Screens | | | | | | | | | 4 | | | 21-02 20 10 80 | Exterior Wall Supplementary Components | | | | | | | | | 4 | | B2010.90 | 21-02 20 10 90 | Exterior Wall Opening Supplementary | | | | | | | | | 3 | | B2020 | 21-02 20 20 | Components Exterior Windows | B – Ext. Openings | | | | | | | | 4 | | | 21-02 20 20 10 | Exterior Operating Windows | | | | | | | | | 4 | | | 21-02 20 20 20 | Exterior Fixed Windows | | | | | | + | | | 4 | | | 21-02 20 20 30 | Exterior Window Wall | | | | | | | | | 4 | | | 21-02 20 20 50 | Exterior Special Function Windows | | | | | | + | | | 3 | | | 21-02 20 50 | Exterior Doors and Grilles | B – Ext. Doors | | | | | | | | 4 | | | 21-02 20 50 10 | Exterior Entrance Doors | | | | | | | | | 4 | | | 21-02 20 50 20 | Exterior Utility Doors | | | | | | + | | | 4 | | | 21-02 20 50 30 | Exterior Oversize Doors | | | | | | + | | | 4 | | | 21-02 20 50 40 | Exterior Special Function Doors | | | | | | + | | | 4 | | | 21-02 20 50 60 | Exterior Grilles | | | | | | + | | | 4 | | | 21-02 20 50 70 | Exterior Gates | | | | | | + | | | 4 | | | 21-02 20 50 70 | Exterior Door Supplementary Components | | | | | | + | | | 3 | | | 21-02 20 70 | | B - Ext. Louvers and Vents | | | | | | | | 4 | | | 21-02 20 70 10 | Exterior Louvers | | | | | | | | | 4 | | | 21-02 20 70 10 | Exterior Vents | | | | | | | | | 3 | | | 21-02 20 70 30 | Exterior Wall Appurtenances | | | | | | | | | 4 | | | 21-02 20 80 10 | Exterior Fixed Grilles and Screens | | | | | | | | | 4 | | | 21-02 20 80 30 | Exterior Opening Protection Devices | | | | | | | | | 4 | | | 21-02 20 80 50 | Exterior Balcony Walls and Railings | | | | | | | | | 4 | | | 21-02 20 80 70 | Exterior Fabrications | | | | | | + | | | 4 | | | 21-02 20 80 80 | Bird Control Devices | | | | | | + | | | 3 | | | 21-02 20 90 | Exterior Wall Specialties | | | | | | | | | 2 | | | 21-02 30 | Exterior Horizontal Enclosures | | | | | | | | | 3 | | | 21-02 30 10 | | B – Roof | | | | | | | | 4 | | | 21-02 30 10 10 | Steep Slope Roofing | | | | | | | | | 4 | | | 21-02 30 10 10 | Low Slope Roofing | | | | | | | | | 4 | | | 21-02 30 10 30 | Canopy Roofing | | | | | | + | | | 4 | | | 21-02 30 10 70 | Roofing Supplementary Components | | | | | | + | | | 3 | | | 21-02 30 10 90 | Roof Appurtenances | | | | | | | | | 4 | | | 21-02 30 20 10 | Roof Accessories | | | | | | | | | 4 | | | 21-02 30 20 30 | Roof Specialties | | | | | | + | | | 4 | | | 21-02 30 20 70 | Rainwater Management | | | | | | + | | | 3 | | | 21-02 30 40 | Traffic Bearing Horizontal Enclosures | B – Roof | | | | | | | | 4 | | | 21-02 30 40 10 | Traffic Bearing Coatings | | | | | | | | | 4 | | | 21-02 30 40 30 | Horizontal Waterproofing Membrane | | | | | | | | | 4 | | | 21-02 30 40 50 | Wear Surfaces | | | | | | | | | 4 | | | 21-02 30 40 90 | Horizontal Enclosure Supplementary | | | | | | + | | | | | D3040.30 | 21 02 30 40 30 | Components | | | | | | | | | 3 | | B3060 | 21-02 30 60 | | B – Ext. Openings | | | | | | | | 4 | | | 21-02 30 60 10 | Roof Windows and Skylights | | | | | | | | | 4 | | | 21-02 30 60 50 | Vents and Hatches | | | | | | | | | 4 | | B3060.90 | 21-02 30 60 90 | Horizontal Openings Supplementary | | | T | | | | | | 2 | | D2000 | 21 02 20 00 | Components Overhead Exterior Enclosures | C. Susp. Clg | | | | | | | | 3 | | | 21-02 30 80 | | C - Susp. Clg. | | | | | | | | 4 | | | 21-02 30 80 10 | Exterior Ceilings Exterior Soffits | | | | | | | | | 4 | | | 21-02 30 80 20 | Exterior Somts Exterior Bulkheads | | | | | | | | | 4 | | | 21-02 30 80 30 | | | | | | | | | | 1 | | | 21-03 00 00 | INTERIORS | | | | | | | | | 2 | | | 21-03 10 | Interior Construction Partitions | C - Partitions | | | | | | | | 3 | | | 21-03 10 10 | | C - Partitions | | | | | | | | 4 | | | 21-03 10 10 10 | Interior Fixed Partitions Masonry | A R Masonry | | | | | | | | 5 | | C1010.10.10 | | Cold-Form Metal Framing | A, B Masonry A, B Cold Formed Metal Framing | | | | | | | | 5 | | C1010.10.20 | | _ | A, B Wood | | | | | | | | 5 | | C1010.10.30 | 21 02 10 10 20 | Interior Glazed Partitions | A, D WOOd | | | | | | | | 4 | | | 21-03 10 10 20 | | | | | | | | | | 4 | | | 21-03 10 10 40 | Interior Demountable Partitions | | | | | | | | | 4 | | | 21-03 10 10 50 | Interior Operable Partitions | | | | | | | | | 4 | | | 21-03 10 10 70 | Interior Screens Interior Partitions Supplementary Components | | | | | | | | | 4 | | C1010.90 | 21-03 10 10 90 | interior Fartitions Supplementary components | 2 | | C1020 | 21-03 10 20 | Interior Windows | C – Int. Windows | | | | | | | |---|--|-------------------|----------------------------|---|----------------------------|--|-----|--|--|---|--| | 4 | | C1020 | 21-03 10 20 10 | Interior Operating Windows | C III. WIIIdows | | | | | | | | 4 | | C1020.10 | 21-03 10 20 10 | Interior Fixed Windows | | | | | | + | | | 4 | | C1020.20 | 21-03 10 20 20 | Interior Special Function Windows | | | | | | + | | | 4 | | C1020.30 | 21-03 10 20 30 | Interior Window Supplementary Components | | | | | | + | | | 4 | | C1020.90 | 21-03 10 20 90 | interior window supplementary components | | | l 1 | | | | | | 3 | | C1030 | 21-03 10 30 | Interior Doors | C – Int. Doors | | | | | | | | 4 | | C1030.10 | 21-03 10 30 10 | Interior Swinging Doors | | | | | | | | | 4 | | C1030.20 | 21-03 10 30 20 | Interior Entrance Doors | | | | | | | | | 4 | | C1030.25 | 21-03 10 30 25 | Interior Sliding Doors | | | | | | | | | 4 | | C1030.30 | 21-03 10 30 30 | Interior Folding Doors | | | | | | | | | 4 | | C1030.40 | 21-03 10 30 40 | Interior Coiling Doors | | | | | | | | | 4 | | C1030.50 | 21-03 10 30 50 | Interior Panel Doors | | | | | | | | | 4 | | C1030.70 | 21-03 10 30 70 | Interior Special Function Doors | | | | | | | | | 4 | | C1030.80 | 21-03 10 30 80 | Interior Access Doors and Panels | | | | | | | | | 4 | | C1030.90 | 21-03 10 30 90 | Interior Door Supplementary Components | | | | | | | | | 3 | | C1040 | 21-03 10 40 | Interior Grilles and Gates | C - Int. Doors | | | | | | | | 4 | | C1040.10 | 21-03 10 40 10 | Interior Grilles | | | | | | _ | | | 4 | | C1040.50 | 21-03 10 40 50 | Interior Gates | 0.0: 15 | | | | | | | | 3 | | C1060 | 21-03 10 60 | Raised Floor Construction | C - Raised Floor | | | | | | | | 4 | | C1060.10 | 21-03 10 60 10 | Access Flooring | | | | | | | | | 4 | | C1060.30 | 21-03 10 60 30 | Platform/Stage Floors Suspended Coiling Construction | C - Susp. Cla | | | | | | | | 3 | | C1070 | 21-03 10 70 | Suspended Ceiling Construction Acoustical Suspended Ceilings | C - Susp. Clg. | | | | | | | | 4 | | C1070.10 | 21-03 10 70 10 | | | | | | | | | | 4 | | C1070.20 | 21-03 10 70 20 | Suspended Plaster and Gypsum Board Ceilings | | | | | | | | | 4 | | C1070.50 | 21-03 10 70 50 | Specialty Suspended Ceilings | | | | | | | | | 4 | | C1070.70 | 21-03 10 70 70 | Special Function Suspended Ceilings | | | | | | | | | 4 | | C1070.90 | 21-03 10 70 90 | Ceiling Suspension Components | | | | | | | | | 3 | | C1090 | 21-03 10 90 | Interior Specialties | | | | | | | | | 4 | | C1090.10 | 21-03 10 90 10 | Interior Railings and Handrails | A, B Miscellaneous Steel | | | | | | | | 4 | | C1090.15 | 21-03 10 90 15 | Interior Louvers | B,C Louvers and Vents | | | | | | | | 4 | | C1090.20 | 21-03 10 90 20 | Information Specialties | | | | | | | | | 4 | | C1090.25 | 21-03 10 90 25 | Compartments and Cubicles | | | | | | | | | 4 | | C1090.30 | 21-03 10 90 30 | Service Walls | | | | | | | | | 4 | | C1090.35 | 21-03 10 90 35 | Wall and Door Protection | | | | | | | | | 4 | | C1090.40 | 21-03 10 90 40 | Toilet, Bath and Laundry Accessories | | | | | | | | | 4 | | C1090.45 | 21-03 10 90 45 | Interior Gas Lighting | | | | | | _ | | | 4 | | C1090.50 | 21-03 10 90 50 | Fireplaces and Stoves | | | | | | | | | 4 | | C1090.60 | 21-03 10 90 60 | Safety Specialties | | | | | | - | | | 4 | | C1090.70 | 21-03 10 90 70 | Storage Specialties Other
Interior Specialties | A, B Miscellaneous Steel | | | | | | | | 2 | | C1090.90
C20 | 21-03 10 90 90
21-03 20 | Other Interior Specialties | A, B IVIISCEIIdHEOUS STEEL | | | | | - | | | 3 | | | 21-03 20 10 | Interior Finishes Wall Finishes | | | | | | | | | 4 | | C2010
C2010.10 | 21-03 20 10 10 | Tile Wall Finish | | | | | | | | | 4 | | C2010.10 | 21-03 20 10 10 | Wall Paneling | | | | | | | | | 4 | | C2010.20 | 21-03 20 10 20 | Wall Coverings | | | | | | | | | 4 | | C2010.35 | 21-03 20 10 35 | Wall Carpeting | | | | | | | | | 4 | | C2010.50 | 21-03 20 10 50 | Stone Facing | | | | | | | | | 4 | | C2010.60 | 21-03 20 10 60 | Special Wall Surfacing | | | | | | | | | 4 | | C2010.70 | 21-03 20 10 70 | Wall Painting and Coating | | | | | | | | | 4 | | C2010.80 | 21-03 20 10 80 | Acoustical Wall Treatment | | | | | | | | | 4 | | C2010.90 | 21-03 20 10 90 | Wall Finish Supplementary Components | | | | | | | | | 3 | | C2020 | 21-03 20 20 | Interior Fabrications | | | | | | | | | 3 | | C2030 | 21-03 20 30 | Flooring | | | | | | | | | 4 | | C2030.10 | 21-03 20 30 10 | Flooring Treatment | | | | | | | | | 4 | | C2030.20 | 21-03 20 30 20 | Tile Flooring | | | | | | | | | 4 | | C2030.30 | 21-03 20 30 30 | Specialty Flooring | | | | | | | | | 4 | | C2030.40 | 21-03 20 30 40 | Masonry Flooring | | | | | | | | | 4 | | C2030.45 | 21-03 20 30 45 | Wood Flooring | | | | | | | | | 4 | | C2030.50 | 21-03 20 30 50 | Resilient Flooring | | | | | | | | | 4 | | C2030.60 | 21-03 20 30 60 | Terrazzo Flooring | | | | | | | | | 4 | | C2030.70 | 21-03 20 30 70 | Fluid-Applied Flooring | | | | | | | | | 4 | | C2030.75 | 21-03 20 30 75 | Carpeting | | | | | | | | | 4 | | C2030.80 | 21-03 20 30 80 | Athletic Flooring | | | | | | | | | 4 | | C2030.85 | 21-03 20 30 85 | Entrance Flooring | | | | | | | | | | | | | | | | | _ | | | | | |---|----|-------------------|-------------------------------|---|--|---|------|---|--|------|------|--| | 4 | | C2030.90 | 21-03 20 30 90 | Flooring Supplementary Components | | | | | | | | | | 3 | | C2040 | 21-03 20 40 | Stair Finishes | | | | | | | | | | 4 | | C2040.20 | 21-03 20 40 20 | Tile Stair Finish | | | | | | | | | | 4 | | C2040.40 | 21-03 20 40 40 | Masonry Stair Finish | | | | | | | | | | 4 | | C2040.45 | 21-03 20 40 45 | Wood Stair Finish | | | | | | | | | | 4 | | C2040.50 | 21-03 20 40 50 | Resilient Stair Finish | | | | | | | | | | 4 | | C2040.60 | 21-03 20 40 60 | Terrazzo Stair Finish | | | | | | | | | | 4 | | C2040.75 | 21-03 20 40 75 | Carpeted Stair Finish | | | | | | | | | | 3 | | C2050 | 21-03 20 50 | Ceiling Finishes | | | | | | | | | | 4 | | C2050.10 | 21-03 20 50 10 | Plaster and Gypsum Board Finish | | | | | | | | | | 4 | | C2050.20 | 21-03 20 50 20 | Ceiling Paneling | | | | | | | | | | 4 | | C2050.70 | 21-03 20 50 70 | Ceiling Painting and Coating | | | | | | | | | | 4 | | C2050.80 | 21-03 20 50 80 | Acoustic Ceiling Treatment | | | | | | | | | | 4 | | C2050.90 | 21-03 20 50 90 | Ceiling Finish Supplementary Components | | | | | | | | | | 1 | | D | 21-04 00 00 | SERVICES | | | | | | | | | | 2 | | D10 | 21-04 10 | Conveying | | | | | | | | | | 3 | | D1010 | 21-04 10 10 | Vertical Conveying Systems | | | | | | | | | | 4 | | D1010.10 | 21-04 10 10 10 | Elevators | | | | | | | | | | 4 | | D1010.20 | 21-04 10 10 20 | Lifts | | | | | | | | | | 4 | | D1010.30 | 21-04 10 10 30 | Escalators | | | | | | | | | | 4 | | D1010.50 | 21-04 10 10 50 | Dumbwaiters Moving Pamps | | | | | | | | | | 4 | | D1010.60 | 21-04 10 10 60 | Moving Ramps Horizontal Conveying | | | | | | | | | | 3 | | D1030
D1030.10 | 21-04 10 30
21-04 10 30 10 | Horizontal Conveying Moving Walks | | | | | | | | | | 4 | | D1030.10 | 21-04 10 30 10 | Turntables | | | | | | | | | | 4 | | D1030.30 | 21-04 10 30 30 | Passenger Loading Bridges | | | | | | | | | | 4 | | D1030.30 | 21-04 10 30 30 | People Movers | | | | | | | - | | | 3 | | D1030.70 | 21-04 10 50 70 | Material Handling | | | | | | | | | | 4 | | D1050 | 21-04 10 50 10 | Cranes | | | | | | | - | | | 4 | | D1030.10 | 21-04 10 50 10 | Hoists | | | | | | | | | | 4 | | D1050.20 | 21-04 10 50 20 | Derrecks | | | | | | | + | | | 4 | | D1050.40 | 21-04 10 50 40 | Conveyors | | | | | | | + | | | 4 | | D1050.50 | 21-04 10 50 40 | Baggage Handling Equipment | | | | | | | | | | 4 | | D1050.60 | 21-04 10 50 60 | Chutes | | | | | | | + | | | 4 | | D1050.70 | 21-04 10 50 70 | Pneumatic Tube Systems | | | | | | | + + | | | 3 | | D1080 | 21-04 10 80 | Operable Access Systems | | | | | | | 1 | | | 4 | | D1080.10 | 21-04 10 80 10 | Suspended Scaffolding | | | | | | | | | | 4 | | D1080.20 | 21-04 10 80 20 | Rope Climbers | | | | | | | | | | 4 | | D1080.30 | 21-04 10 80 30 | Elevating Platforms | | | | | | | | | | 4 | | D1080.40 | 21-04 10 80 40 | Powered Scaffolding | | | | | | | | | | 4 | | D1080.50 | 21-04 10 80 50 | Building Envelope Access | | | | | | | | | | 2 | | D20 | 21-04 20 | Plumbing | D20 - Plumbing, D- Fluid_Gas Distribution; D50 - | | | | | | | | | | | | 04.07.22.1 | Demonto Water Division | Electrical | | | | | | | | | 3 | | D2010 | 21-04 20 10 | Domestic Water Distribution | | | | | | | | | | 4 | | D2010.10 | 21-04 20 10 10 | Facility Potable-Water Storage Tanks | | | | | | | | | | 4 | | D2010.20 | 21-04 20 10 20 | Domestic Water Equipment | | | | | | | | | | 4 | | D2010.40 | 21-04 20 10 40 | Domestic Water Piping | | | | | | | | | | 4 | | D2010.60 | 21-04 20 10 60 | Plumbing Fixtures | | | | | | | | | | 4 | | D2010.90 | 21-04 20 10 90 | Domestic Water Distribution Supplementary
Components | | | | | | | | | | 3 | | D2020 | 21-04 20 20 | Sanitary Drainage | | | | | | | | | | 4 | | D2020.10 | 21-04 20 20 10 | Sanitary Sewerage Equipment | | | | | | | | | | 4 | | D2020.30 | 21-04 20 20 30 | Sanitary Sewerage Piping | | | | | | | | | | 4 | | D2020.90 | 21-04 20 20 90 | Sanitary Drainage Supplementary Components | | | | | | | | | | | | | | 0.1111 | | | | | | | | | | 3 | | D2030 | 21-04 20 30 | Building Support Plumbing Systems | | | | | | | | | | 4 | | D2030.10 | 21-04 20 30 10 | Stormwater Drainage Equipment | | | | | | | | | | 4 | | D2030.20 | 21-04 20 30 20 | Stormwater Drainage Piping | | | | | | | | | | 4 | | D2030.30 | 21-04 20 30 30 | Facility Stormwater Drains | | | | | | | | | | 4 | | D2030.60 | 21-04 20 30 60 | Gray Water Systems | | | | | | | | | | 4 | | D2030.90 | 21-04 20 30 90 | Building Support Plumbing System Supplementary Components | | | | | | | | | | 3 | | D2050 | 21-04 20 50 | General Service Compressed-Air | | | | | | | | | | 3 | | D2060 | 21-04 20 60 | Process Support Plumbing Systems | | | | | | | | | | 4 | | D2060.10 | 21-04 20 60 10 | Compressed-Air Systems | | | | | | | | | | 4 | | D2060.20 | 21-04 20 60 20 | Vacuum Systems | | | | | | | | | | | -1 | | | | | _ |
 | - | |
 |
 | | | | | | | |
 |
 |
 |
 | | | |---|----------------------|----------------|---|---|------|------|------|------|--|--| | 4 | D2060.30 | 21-04 20 60 30 | Gas Systems | | | | | | | | | 4 | D2060.40 | 21-04 20 60 40 | Chemical-Waste Systems | | | | | | | | | 4 | D2060.50 | 21-04 20 60 50 | Processed Water Systems | | | | | | | | | 4 | D2060.90 | 21-04 20 60 90 | Process Support Plumbing System | | | | | | | | | 2 | D30 | 21 04 20 | Supplementary Components | D20 - Plumbing; D30 - HVAC; D- Air Distribution; D40 - | | | | | | | | 2 | D30 | 21-04 30 | HVAC | Fire Protection; D- Fluid_Gas Distribution; D50 - | | | | | | | | | | | | Electrical: D- Electrical Distribution | | | | | | | | 3 | D3010 | 21-04 30 10 | Facility Fuel Systems | | | | | | | | | 4 | D3010.10 | 21-04 30 10 10 | Fuel Piping | | | | | | | | | 4 | D3010.30 | 21-04 30 10 30 | Fuel Pumps | | | | | | | | | 4 | D3010.50 | 21-04 30 10 50 | Fuel Storage Tanks | | | | | | | | | 3 | D3020 | 21-04 30 20 | Heating Systems | | | | | | | | | 4 | D3020.10 | 21-04 30 20 10 | Heat Generation | | | | | | | | | 4 | D3020.30 | 21-04 30 20 30 | Thermal Heat Storage | | | | | | | | | 4 | D3020.70 | 21-04 30 20 70 | Decentralized Heating Equipment | | | | | | | | | 4 | D3020.90 | 21-04 30 20 90 | Heating System Supplementary Components | | | | | | | | | 3 | D3030 | 21-04 30 30 | Cooling Systems | | | | | | | | | 4 | D3030.10 | 21-04 30 30 10 | Central Cooling | | | | | | | | | 4 | D3030.30 | 21-04 30 30 30 | Evaporative Air-Cooling | | | | | | | | | 4 | D3030.50 | 21-04 30 30 50 | Thermal Cooling Storage | | | | | | | | | 4 | D3030.70 | 21-04 30 30 70 | Decentralized Cooling | | | | | | | | | 4 | D3030.90 | 21-04 30 30 90 | Cooling System Supplementary Components | | | | | | | | | 3 | D3050 | 21-04 30 50 | Facility HVAC Distribution Systems | | | | | | | | | 4 | D3050.10 | 21-04 30 50 10 | Facility Hydronic Distribution | | | | | | | | | 4 | D3050.30 | 21-04 30 50 30 | Facility Steam Distribution | | | | | | | | | 4 | D3050.50 | 21-04 30 50 50 | HVAC Air Distribution | | | | | | | | | 4 | D3050.90 | 21-04 30 50 90 | Facility Distribution Systems Supplementary | | | | | | | | | 3 | D3060 | 21-04 30 60 | Components Ventilation | | | | | | | | | 4 | D3060.10 | 21-04 30 60 10 | Supply Air | | | | | | | | | 4 | D3060.20 | 21-04 30 60 20 | Return Air | | | | | | | | | 4 | D3060.30 | 21-04 30 60 30 | Exhaust Air | | | | | | | | | 4 | D3060.40 | 21-04 30 60 40 | Outside Air | | | | | | | | | 4 | D3060.60 | 21-04 30 60 60 | Air-to-Air Energy Recovery | | | | | | | | | 4 | D3060.70 | 21-04 30 60 70 | HVAC Air Cleaning | | | | | | | | | 4 | D3060.90 | 21-04 30 60 90 | Ventilation Supplementary Components | | | | | | | | | 3 | D3070 | 21-04 30 70 | Special Purpose HVAC Systems | | | | | | | | | 4 | D3070.10 | 21-04 30 70 10 | Snow Melting | | | | | | | | | 2 | D40 | 21-04 40 | Fire Protection | D40 - Fire Protection, D- Fluid_Gas Distribution; D50 - | | | | | | | | 2 | D40 | 21 04 40 | The Frotestion |
Electrical, | | | | | | | | 3 | D4010 | 21-04 40 10 | Fire Suppression | | | | | | | | | 4 | D4010.10 | 21-04 40 10 10 | Water-Based Fire-Suppression | | | | | | | | | 4 | D4010.50 | 21-04 40 10 50 | Fire-Extinguishing | | | | | | | | | 4 | D4010.90 | 21-04 40 10 90 | Fire Suppression Supplementary Components | | | | | | | | | 2 | D4030 | 21-04 40 30 | Fire Protection Specialties | | | | | | | | | 3 | D4030
D4030.10 | 21-04 40 30 | Fire Protection Specialties Fire Protection Cabinets | | | | | | | | | 4 | D4030.10
D4030.30 | 21-04 40 30 10 | Fire Extinguishers | | | | | | | | | 4 | D4030.30
D4030.50 | 21-04 40 30 30 | Breathing Air Replenishment Systems | | | | | | | | | 4 | D4030.50 | 21-04 40 30 50 | Fire Extinguisher Accessories | | | | | | | | | 2 | D50 | 21-04 40 30 70 | Electrical | D50 - Electrical, D- Electrical Distribution | | | | | | | | 3 | D5010 | 21-04 50 10 | Facility Power Generation | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 | | | | | | | | 4 | D5010
D5010.10 | 21-04 50 10 10 | Packaged Generator Assemblies | | | | | | | | | 4 | D5010.10
D5010.20 | 21-04 50 10 10 | Battery Equipment | | | | | | | | | 4 | D5010.20 | 21-04 50 10 20 | Photovoltaic Collectors | | | | | | | | | 4 | D5010.30 | 21-04 50 10 30 | Fuel Cells | | | | | | | | | 4 | D5010.40 | 21-04 50 10 40 | Power Filtering and Conditioning | | | | | | | | | 4 | D5010.60 | 21-04 50 10 60 | Transfer Switches | | | | | | | | | 4 | D5010.70 | 21-04 50 10 70 | Facility Power Generation Supplementary | | | | | | | | | | 03010.90 | 21 04 30 10 30 | Components | | | | | | | | | 3 | D5020 | 21-04 50 20 | Electrical Service and Distribution | | | | | | | | | 4 | D5020.10 | 21-04 50 20 10 | Electrical Service | | | | | | | | | 4 | D5020.30 | 21-04 50 20 30 | Power Distribution | | | | | | | | | 4 | D5020.70 | 21-04 50 20 70 | Facility Grounding | | | | | | | | | 4 | D5020.90 | 21-04 50 20 90 | Electrical Service and Distribution | | | | | | | | | | | | Supplementary Components | | | | | | | | | 3 | D5030 | 21-04 50 30 | General Purpose Electrical Power | 1 | | | | | | | | | | | | | |--|---|--|----------|-----------------|--|--|--|--|--|--|-----|--| | | 4 | | D5030.10 | 21-04 50 30 10 | Branch Wiring System | | | | | | | | | Company 1.0 (Company (Comp | 4 | | D5030.50 | 21-04 50 30 50 | Wiring Devices | | | | | | | | | 1 | 4 | | D5030.90 | | General Purpose Electrical Power Supplementary | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | 3 | | D5040 | 21-04 50 40 | Lighting | | | | | | | | | 1 | 4 | | D5040.10 | 21-04 50 40 10 | Lighting Control | | | | | | | | | 1 | 4 | | D5040.20 | 21-04 50 40 20 | Branch Wiring for Lighting | | | | | | | | | | 4 | | D5040.50 | 21-04 50 40 50 | Lighting Fixtures | | | | | | | | | 1 | 4 | | | | Lighting Supplementary Components | | | | | | | | | Company Control Cont | 3 | | | | | | | | | | | | | Company Comp | | | | | Lightning Protection | | | | | | | | | 4 | | | | | | | | | | | + | | | Company Comp | | | | | | | | | | | + + | | | Company | | | | | | | | | | | + | | | Process Proc | 4 | | D3060.90 | 21-04 30 80 90 | | | | | | | | | | 1 | 2 | | D60 | 21-04 60 | | D50 - Electrical, D- Electrical Distribution | | | | | | | | Company | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | • | | 50010.10 | 21 0 1 00 10 10 | | | | | | | | | | Company Comp | 4 | | D6010.20 | 21-04 60 10 20 | Data Communications Hardware | | | | | | | | | Company Comp | 4 | | D6010.30 | 21-04 60 10 30 | Data Communications Peripheral Data | | | | | | | | | Post | | | | | | | | | | | | | | 1 | • | | | | | | | | | | | | | 3 | 4 | | D6010.60 | 21-04 60 10 60 | | | | | | | | | | Committee Comm | 2 | | D6020 | 21 04 60 20 | | | | | | | | | | A | | | | | | | | | | | | | | 1 | 4 | | D6020.10 | 21-04 60 20 10 | | | | | | | | | | Decicio 20 21-04 (20 20 30 Commission Messaging M | 4 | | D6020.20 | 21-04 60 20 20 | | | | | | | | | | A | | | | | | | | | | | + | | | Company Comp | • | | | | | | | | | | + + | | | 1 | | | | | | | | | | | + | | | A | | | | | | | | | | | | | | 1 | | | | | | | | | | | _ | | | 1 | | | | | | | | | | | + | | | A | | | | | | | | | | | | | | A | | | | | | | | | | | | | | A | | | | | | | | | | | | | | 1 | 4 | | D6060.30 | 21-04 60 60 30 | Healthcare Communications and Monitoring | | | | | | | | | 1 | 1 | | D6060 E0 | 21 04 60 60 50 | Distributed Systems | | | | | | + | | | 2 | | | | | | | | | | | 1 | | | 3 | 3 | | D6090 | 21-04 60 90 | Communications Supplementary Components | | | | | | | | | 3 | 2 | | D70 | 21-04 70 | Electronic Safety and Security | D50 - Electrical, D- Electrical Distribution | | | | | | | | 1 | | | | | | | | | | | | | | A | | | | | | | | | | | | | | 3 | | | | | | | | | | | 1 | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | A D7050.10 21-04 70 50 10 Fire Detection and Alarm D7050.20 21-04 70 50 20 Radiation Detection and Alarm D7050.20 21-04 70 50 30 Fuel-Gos Detection and Alarm D7050.40 21-04 70 50 40 Fuel-Oil Detection and Alarm D7050.60 21-04 70 50 40 Fuel-Oil Detection and Alarm D7050.60 21-04 70 50 60 Refragation Detection and Alarm D7050.60 21-04 70 50 60 Water Intrusion Detection and Alarm D7050.60 21-04 70 70 60 Water Intrusion Detection and Alarm D7070 21-04 70 70 Electronic Monitoring and Control Electronic Monitoring and Control D7070 21-04 70 70 Electronic Detection Monitoring and Control D7070 21-04 70 70 Electronic Electric Monitoring and Control D7070 Electronic Safety and Security Supplementary Components D8010 21-04 80 10 Integrated Automation Control of Equipment Equi | | | | | | | | | | | | | | A D7050.20 21-04 70 50 20 Radiation Detection and Alarm D7050.30 21-04 70 50 30 Fuel-Gas Detection and Alarm D7050.30 21-04 70 50 40 Fuel-Gas Detection and Alarm D7050.50 21-04 70 50 40 Fuel-Gas Detection and Alarm D7050.50 21-04 70 50 40 Fuel-Gas Detection and Alarm D7050.50 21-04 70 50 50 Refrigeration Detection and Alarm D7050.50 21-04 70 50 50 Refrigeration Detection and Alarm D7050.60 21-04 70 50 60 Water Intrusion Detection and Alarm D7050.60 21-04 70 70 fuel-circle Monitoring and Control D7070.10 Electrical Distribution D7070.10 D7070.10 Electronic Safety and Security Supplementary Components D7070.10 | | | | | | | | | | | | | | 4 0 07050.30 21-04 70 50 30 Fuel-Gas Detection and Alarm 0 07050.40 21-04 70 50 40 Fuel-Oil Detection and Alarm 0 07050.50 21-04 70 50 40 Fuel-Oil Detection and Alarm 0 07050.50 21-04 70 50 50 Refrigeration Detection and Alarm 0 07050.60 21-04 70 50 60 Water Intrusion Detection and Alarm 0 07070 21-04 70 50 60 Water Intrusion Detection and Alarm 0 07070 07 | | | | |
| | | | | | | | | 1 | | | | | | | | | | | | | | A D7050.50 21-04 70 50 50 Refrigeration Detection and Alarm D7050.60 21-04 70 50 60 Water Intrusion Detection and Alarm D7050.60 21-04 70 70 Electronic Monitoring and Control D7070.10 21-04 70 70 Electronic Detection Monitoring and Control D7070.10 21-04 70 70 Electronic Detection Monitoring and Control D7070.10 21-04 70 70 10 Electronic Detection Monitoring and Control D7070.10 21-04 70 70 10 Electronic Detection Monitoring and Control D7070.10 Electronic Safety and Security Supplementary Components D7070.10 Electronic Safety and Security Supplementary Components D8010.10 Electronic D7070.10 Electronic Safety and Security Supplementary Components D8010.10 D8010.10 | | | | | | | | | | | | | | 4 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | Drophysical Control | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | Dropo | | | | | | | | | | | | | | Components | | | | | | | | | | | | | | D80 21-04 80 Integrated Automation D50 - Electrical, D- Electrical Distribution D80 D8010 21-04 80 10 Integrated Automation Facility Controls D8010.10 21-04 80 10 10 Integrated Automation Control of Equipment D8010.20 21-04 80 10 20 Integrated Automation Control of Conveying Equipment D8010.30 21-04 80 10 30 Integrated Automation Control of Fire-Suppression Systems D8010.30 Suppression Systems D8010.30 Suppression Systems D8010.30 D80 | 3 | | D7090 | 21-04 70 90 | | | | | | | | | | 1 D8010 21-04 80 10 Integrated Automation Facility Controls D8010.10 21-04 80 10 10 Integrated Automation Control of Equipment D8010.20 21-04 80 10 20 Integrated Automation Control of Conveying Equipment D8010.30 21-04 80 10 30 Integrated Automation Control of Fire-Suppression Systems D8010.30 Suppression Systems D8010.30 D8010 | 2 | | Dou | 21_04.90 | | D50 - Flectrical D- Flectrical Distribution | | | | | | | | D8010.10 21-04 80 10 10 Integrated Automation Control of Equipment D8010.20 21-04 80 10 20 Integrated Automation Control of Conveying Equipment D8010.30 21-04 80 10 30 Integrated Automation Control of Fire-Suppression Systems D8010.30 Suppression Systems D8010.30 D8010.3 | | | | | | 230 Electrical Distribution | | | | | | | | 4 D8010.20 21-04 80 10 20 Integrated Automation Control of Conveying Equipment 4 D8010.30 21-04 80 10 30 Integrated Automation Control of Fire-Suppression Systems | | | | | | | | | | | | | | 4 D8010.30 21-04 80 10 30 Integrated Automation Control of Fire- Suppression Systems | | | | | | | | | | | | | | D8010.30 21-04 80 10 30 Integrated Automation Control of Fire-Suppression Systems | 4 | | D8010.20 | 21-04 80 10 20 | | | | | | | | | | Suppression Systems | 4 | | D8010 30 | 21-04 80 10 30 | | | | | | | | | | 4 D8010.40 21-04 80 10 40 Integrated Automation Control of HVAC Systems | | | 50010.30 | 21 04 00 10 30 | | | | | | | | | | | 4 | | D8010.40 | 21-04 80 10 40 | 4 | | D8010.50 | 21-04 80 10 50 | Integrated Automation Control of Plumbing | | | | | | | | |---|--|-------------------|-------------------------------|---|--|--|--|--|--|---|--| | 4 | | D8010.60 | 21-04 80 10 60 | Systems Integrated Automation Control of Electrical | | | | | | | | | 4 | | D8010.00 | 21-04 80 10 00 | Systems | | | | | | | | | 4 | | D8010.70 | 21-04 80 10 70 | Integrated Automation Control of | | | | | | | | | 4 | | D8010.80 | 21-04 80 10 80 | Communication Systems Integrated Automation Control of Electronic | | | | | | | | | 4 | | D8010.80 | 21-04 80 10 80 | Safety and Security Systems | | | | | | | | | 4 | | D8010.90 | 21-04 80 10 90 | Integrated Automation Supplementary | | | | | | | | | 1 | | Е | 21-05 00 00 | EQUIPMENT & FURNISHINGS | | | | | | + | | | 2 | | E10 | 21-05 10 00 | Equipment | | | | | | | | | 3 | | E1010 | 21-05 10 10 | Vehicle and Pedestrian Equipment | | | | | | | | | 4 | | E1010.10 | 21-05 10 10 10 | Vehicle Servicing Equipment | | | | | | | | | 4 | | E1010.30 | 21-05 10 10 30 | Interior Parking Control Equipment | | | | | | | | | 4 | | E1010.50 | 21-05 10 10 50 | Loading Dock Equipment | | | | | | | | | 4 | | E1010.70 | 21-05 10 10 70 | Interior Pedestrian Control Equipment | | | | | | | | | 3 | | E1030 | 21-05 10 30 | Commercial Equipment | | | | | | | | | 4 | | E1030.10 | 21-05 10 30 10 | Mercantile and Service Equipment | | | | | | | | | 4 | | E1030.20 | 21-05 10 30 20 | Vault Equipment | | | | | | | | | 4 | | E1030.25 | 21-05 10 30 25 | Teller and Service Equipment | | | | | | | | | 4 | | E1030.30 | 21-05 10 30 30 | Refrigerated Display Equipment Commercial Laundry and Dry Cleaning | | | | | | | | | 4 | | E1030.35 | 21-05 10 30 35 | Equipment | | | | | | | | | 4 | | E1030.40 | 21-05 10 30 40 | Maintenance Equipment | | | | | | | | | 4 | | E1030.50 | 21-05 10 30 50 | Hospitality Equipment | | | | | | | | | 4 | | E1030.55 | 21-05 10 30 55 | Unit Kitchens | | | | | | | | | 4 | | E1030.60 | 21-05 10 30 60 | Photographic Processing Equipment | | | | | | | | | 4 | | E1030.70 | 21-05 10 30 70 | Postal, Packaging and Shipping Equipment | | | | | | | | | 4 | | E1030.75 | 21-05 10 30 75 | Office Equipment | | | | | | | | | 3 | | E1030.80
E1040 | 21-05 10 30 80
21-05 10 40 | Foodservice Equipment Institutional Equipment | | | | | | | | | 4 | | E1040.10 | 21-05 10 40 10 | Educational and Scientific Equipment | | | | | | | | | 4 | | E1040.20 | 21-05 10 40 20 | Healthcare Equipment | | | | | | | | | 4 | | E1040.40 | 21-05 10 40 40 | Religious Equipment | | | | | | | | | 4 | | E1040.60 | 21-05 10 40 60 | Security Equipment | | | | | | | | | 4 | | E1040.70 | 21-05 10 40 70 | Detention Equipment | | | | | | | | | 3 | | E1060 | 21-05 10 60 | Residential Equipment | | | | | | | | | 4 | | E1060.10 | 21-05 10 60 10 | Residential Appliances | | | | | | | | | 4 | | E1060.50 | 21-05 10 60 50 | Residential Stairs | | | | | | | | | 4 | | E1060.70 | 21-05 10 60 70 | Residential Ceiling Fans | | | | | | | | | 3 | | E1070
E1070.10 | 21-05 10 70
21-05 10 70 10 | Entertainment and Recreational Equipment Theater and Stage Equipment | | | | | | | | | 4 | | E1070.10 | 21-05 10 70 10 | Musical Equipment | | | | | | | | | 4 | | E1070.50 | 21-05 10 70 50 | Athletic Equipment | | | | | | | | | 4 | | E1070.60 | 21-05 10 70 60 | Recreational Equipment | | | | | | | | | 3 | | E1090 | 21-05 10 90 | Other Equipment | | | | | | | | | 4 | | E1090.10 | 21-05 10 90 10 | Solid Waste Handling Equipment | | | | | | | | | 4 | | E1090.30 | 21-05 10 90 30 | Agricultural Equipment | | | | | | | | | 4 | | E1090.40 | 21-05 10 90 40 | Horticultural Equipment | | | | | | | | | 4 | | E1090.60 | 21-05 10 90 60 | Decontamination Equipment | | | | | | | | | 2 | | E20 | 21-05 20
21-05 20 10 | Furnishings Fixed Furnishings | | | | | | | | | 3 | | E2010
E2010.10 | 21-05 20 10 | Fixed Art | | | | | | | | | 4 | | E2010.10 | 21-05 20 10 10 | Window Treatments | | | | | | | | | 4 | | E2010.30 | 21-05 20 10 20 | Casework | | | | | | | | | 4 | | E2010.70 | 21-05 20 10 70 | Fixed Multiple Seating | | | | | | | | | 4 | | E2010.90 | 21-05 20 10 90 | Other Fixed Furnishings | | | | | | | | | 3 | | E2050 | 21-05 20 50 | Movable Furnishings | | | | | | | | | 4 | | E2050.10 | 21-05 20 50 10 | Movable Art | | | | | | | | | 4 | | E2050.30 | 21-05 20 50 30 | Furniture | | | | | | | | | 4 | | E2050.40 | 21-05 20 50 40 | Accessories | | | | | | | | | 4 | | E2050.60 | 21-05 20 50 60 | Movable Multiple Seating | | | | | | | | | 4 | | E2050.90 | 21-05 20 50 90 | Other Movable Furnishings | | | | | | | | | 1 | | F | 21-06 00 00 | SPECIAL CONSTRUCTION & | | | | | | | | | 2 | | F10 | 21-06 10 | DEMOLITION Special Construction | | | | | | | | | 2 | | LIU | 21-00 10 | Special Construction | | | | | | | | | 1 | 2 | | 54040 | 24.06.40.40 | Integrated Construction | | | | | | | | |--|---|--|----------|----------------|-------------------------------|--|--|--|--|--|---|--| | 1 | 3 | | F1010 | 21-06 10 10 | Integrated
Construction | 1 | | | | | | | | | | | + | | | Fig. 1, 124, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | | | | | | | | | | | | | | Fig. Co. 13.85.00 | | | | | | | | | | | | | | Company Comp | | | | | | | | | | | | | | 1 | - | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | 4 | | | | Manufactured Canopies | | | | | | | | | 1 | 4 | | | | Rammed Earth Construction | | | | | | | | | 1 1939.02 17, 43 19 19 19 19 19 19 19 1 | 4 | | F1020.70 | 21-06 10 20 70 | Towers | | | | | | | | | 1 173 174 | 3 | | F1030 | 21-06 10 30 | Special Function Construction | | | | | | | | | A 1,100,00 23-90 2000 | 4 | | F1030.10 | 21-06 10 30 10 | Sound and Vibration Control | | | | | | | | | 1 | 4 | | F1030.30 | | Seismic Control | | | | | | | | | A | | | | | | | | | | | | | | 1 | 3 | 1 100.00 1 10 10 10 10 1 | • | | | | | | | | | | | | | A | | | | | | | | | | | | | | A | | | | | | | | | | | | | | 1 10,007.72 11,005.20 20.72 memory controlled special contro | - | | | | | | | | | | | | | Post | • | | | | | | | | | | + | | | A | | | | | | | | | | | | | | 1 | 3 | | 11000 | 21 00 10 00 | | | | | | | | | | A | 4 | | | | Indoor Soccer Boards | | | | | | | | | 1 | 4 | | | | | | | | | | | | | 4 | 4 | | | | | | | | | | | | | 1 | 4 | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1,000,100 21-05,000 00 21-05,000 00 31-05,0 | | | | | | | | | | | | | | Company Comp | | | | | | | | | | | | | | 1980 | - | | | | | | | | | | | | | Company Comp | - | | | | | | | | | | + | | | 120 | | | | | | | | | | | + | | | P2010 P201 | | | | | | | | | | | | | | F2010.30 21-06.20 10.00 Materials Materials Remarkation Re | | | | | | | | | | | | | | A | | | | | | | | | | | | | | Page | | | | | Materials | | | | | | | | | F2010.50 21.06 20 10 0 | | | | | | | | | | | | | | A | • | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | F3010 12.06 30 10 Structure Demolition | | | | | | | | | | | | | | F3010.10 12-06 30 10 30 Sudding Elements Demolition | | | | | | | | | | | | | | F3010.30 21-06 30 10 30 Tower Demolition | | | | | | | | | | | | | | F3010.50 21-06 30 10 70 Dam Demolition | | | | | - | | | | | | | | | Sective Bright Demo Selective Demoition D | | | | | | | | | | | | | | Society Fast | | | | | | | | | | | | | | F3030.10 21-06 30 30 10 Selective Bidg Demo | | | | | | |
 | | | | | | F3030.30 21-06 30 30 30 Selective Interior Demolition F3030.50 21-06 30 30 50 Selective Bridge Demolition F3030.50 21-06 30 30 50 Selective Bridge Demolition F3030.70 21-06 30 30 70 Selective Bridge Demolition F3030.70 21-06 30 50 Selective Bridge Demolition F3050 21-06 30 50 Structure Moving F3050 21-06 30 50 Structure Moving F3050.10 21-06 30 50 10 Structure Relocation F3050.30 21-06 30 50 30 Structure Raising F3050.30 21-07 30 50 30 Structure Raising F3050.30 21-07 30 50 30 Structure Raising F3050.30 Structur | | | | | | | | | | | | | | 4 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | F303.70 21-06 30 30 70 Selective Historic Demolition F305.01 F305. | | | | | | | | | | | | | | Structure Moving Structure Moving Structure Moving Structure Moving Structure Relocation Raising Structu | | | | | | | | | | | | | | ## F305.10 | | | | | Structure Moving | | | | | | | | | 4 F3050.30 21-06 30 50 30 Structure Raising Rais | 4 | | | | Structure Relocation | | | | | | | | | 1 G 21-07 00 00 SITEWORK </td <td>4</td> <td></td> <td></td> <td></td> <td>Structure Raising</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | 4 | | | | Structure Raising | | | | | | | | | 3 | 1 | | G | | SITEWORK | | | | | | | | | 4 G1010.10 21-07 10 10 10 Clearing and Grubbing 4 G1010.30 21-07 10 10 30 Tree and Shrub Removal and Trimming 5 G1010.50 21-07 10 10 50 Earth Stripping and Stockpiling | 2 | | | | | | | | | | | | | 4 G1010.30 21-07 10 10 30 Tree and Shrub Removal and Trimming 4 G1010.50 21-07 10 10 50 Earth Stripping and Stockpiling | 3 | | | | | | | | | | | | | 4 G1010.50 21-07 10 10 50 Earth Stripping and Stockpiling | 3 | | | | | | | | | | | | | | | 3 | | G1020 | 21-07 10 20 | Site Elements Demolition | | | | | | | | | | | | | | |
 |
 |
 |
 | | | |---|--|----------|----------------|---|--|------|------|------|------|-----|--| | 4 | | G1020.10 | 21-07 10 20 10 | Utility Demolition | | | | | | | | | 4 | | G1020.30 | 21-07 10 20 30 | Infrastructure Demolition | | | | | | | | | 4 | | G1020.50 | 21-07 10 20 50 | Selective Site Demolition | | | | | | | | | 3 | | G1030 | 21-07 10 30 | Site Element Relocations | | | | | | | | | 4 | | G1030.10 | 21-07 10 30 10 | Utility Relocation | | | | | | | | | 3 | | G1050 | 21-07 10 50 | Site Remediation | | | | | | | | | 4 | | G1050.10 | 21-07 10 50 10 | Physical Decontamination | | | | | | | | | 4 | | G1050.15 | 21-07 10 50 15 | Chemical Decontamination | | | | | | | | | 4 | | G1050.20 | 21-07 10 50 20 | Thermal Decontamination | | | | | | | | | 4 | | G1050.25 | 21-07 10 50 25 | Biological Decontamination | | | | | | | | | 4 | | G1050.30 | 21-07 10 50 30 | Remediation Soil Stabilization | | | | | | | | | 4 | | G1050.40 | 21-07 10 50 40 | Site Containment | | | | | | | | | 4 | | G1050.45 | 21-07 10 50 45 | Sinkhole Remediation | | | | | | | | | 4 | | G1050.50 | 21-07 10 50 50 | Hazardous Waste Drum Handling | | | | | | | | | 4 | | G1050.60 | 21-07 10 50 60 | Contaminated Site Material Removal | | | | | | | | | 4 | | G1050.80 | 21-07 10 50 80 | Water Remediation | | | | | | | | | 3 | | G1070 | 21-07 10 70 | Site Earthwork | | | | | | 1 | | | 4 | | G1070.10 | 21-07 10 70 10 | Grading | | | | | | | | | 4 | | G1070.20 | 21-07 10 70 20 | Excavation and Fill | | | | | | | | | 4 | | G1070.30 | 21-07 10 70 30 | Embankments | | | | | | | | | 4 | | G1070.35 | 21-07 10 70 35 | Erosion and Sedimentation Controls | | | | | | | | | 4 | | G1070.40 | 21-07 10 70 40 | Soil Stabilization | | | | | | | | | 4 | | G1070.45 | 21-07 10 70 45 | Rock Stabilization | | | | | | | | | 4 | | G1070.50 | 21-07 10 70 50 | Soil Reinforcement | | | | | | + + | | | 4 | | G1070.55 | 21-07 10 70 55 | Slope Protection | | | | | | | | | 4 | | G1070.60 | 21-07 10 70 60 | Gabions | | | | | | + + | | | 4 | | G1070.65 | 21-07 10 70 65 | Riprap | | | | | | + + | | | 4 | | G1070.70 | 21-07 10 70 03 | Wetlands | | | | | | + | | | 4 | | G1070.70 | 21-07 10 70 70 | Earth Dams | | | | | | + | | | 4 | | G1070.80 | 21-07 10 70 80 | Site Soil Treatment | | | | | | + | | | 2 | | G20 | 21-07 20 | | | | | | | + | | | | | | | Site Improvements Roadways | | | | | | | | | 3 | | G2010 | 21-07 20 10 | Roadway Pavement | | | | | | | | | 4 | | G2010.10 | 21-07 20 10 10 | Roadway Curbs and Gutters | | | | | | + | | | - | | G2010.20 | 21-07 20 10 20 | Roadway Appurtenances | | | | | | + | | | 4 | | G2010.40 | 21-07 20 10 40 | | | | | | | + | | | 4 | | G2010.70 | 21-07 20 10 70 | Roadway Lighting Vehicle Fare Collection | | | | | | | | | 4 | | G2010.80 | 21-07 20 10 80 | | | | | | | | | | 3 | | G2020 | 21-07 20 20 | Parking Let Payament | | | | | | | | | 4 | | G2020.10 | 21-07 20 20 10 | Parking Lot Curbs and Gutters | | | | | | + | | | 4 | | G2020.20 | 21-07 20 20 20 | Parking Lot Curbs and Gutters | | | | | | + | | | 4 | | G2020.40 | 21-07 20 20 40 | Parking Lot Appurtenances | | | | | | - | | | 4 | | G2020.70 | 21-07 20 20 70 | Parking Lot Lighting | | | | | | | | | 4 | | G2020.80 | 21-07 20 20 80 | Exterior Parking Control Equipment | | | | | | | | | 3 | | G2030 | 21-07 20 30 | Pedestrian Plazas and Walkways | | | | | | | | | 4 | | G2030.10 | 21-07 20 30 10 | Pedestrian Pavement | | | | | | | | | 4 | | G2030.20 | 21-07 20 30 20 | Pedestrian Pavement Curbs and Gutters | | | | | | | | | 4 | | G2030.30 | 21-07 20 30 30 | Exterior Steps and Ramps | | | | | | | | | 4 | | G2030.40 | 21-07 20 30 40 | Pedestrian Pavement Appurtenances | | | | | | | | | 4 | | G2030.70 | 21-07 20 30 70 | Plaza and Walkway Lighting | | | | | | | | | 4 | | G2030.80 | 21-07 20 30 80 | Exterior Pedestrian Control Equipment | | | | | | | | | 3 | | G2040 | 21-07 20 40 | Airfields | | | | | | | | | 4 | | G2040.10 | 21-07 20 40 10 | Aviation Pavement | | | | | | | | | 4 | | G2040.20 | 21-07 20 40 20 | Aviation Pavement Curbs and Gutters | | | | | | | | | 4 | | G2040.40 | 21-07 20 40 40 | Aviation Pavement Appurtenances | | | | | | | | | 4 | | G2040.70 | 21-07 20 40 70 | Airfield Lighting | | | | | | | | | 4 | | G2040.80 | 21-07 20 40 80 | Airfield Signaling and Control Equipment | | | | | | | | | 3 | | G2050 | 21-07 20 50 | Athletic, Recreational, and Playfield Areas | | | | | | | | | 4 | | G2050.10 | 21-07 20 50 10 | Athletic Areas | | | | | | | | | 4 | | G2050.30 | 21-07 20 50 30 | Recreational Areas | | | | | | | | | 4 | | G2050.50 | 21-07 20 50 50 | Playfield Areas | | | | | | | | | 3 | | G2060 | 21-07 20 60 | Site Development | | | | | | | | | 4 | | G2060.10 | 21-07 20 60 10 | Exterior Fountains | | | | | | | | | 4 | | G2060.20 | 21-07 20 60 20 | Fences and Gates | | | | | | | | | 4 | | G2060.25 | 21-07 20 60 25 | Site Furnishings | | | | | | | | | 4 | | G2060.30 | 21-07 20 60 30 | Exterior Signage | 4 | | G2060.35 21-0 | 07 20 60 35 | Flagpoles | | | | | | | | |---|--|---------------|-------------|--|--|--|--|--|--|---|--| | 4 | | G2060.40 21-0 | 07 20 60 40 | Covers and Shelters | | | | | | | | | 4 | | G2060.45 21-0 | 07 20 60 45 | Exterior Gas Lighting | | | | | | | | | 4 | | G2060.50 21-0 | 07 20 60 50 | Site Equipment | | | | | | | | | 4 | | G2060.60 21-0 | 07 20 60 60 | Retaining Walls | | | | | | 1 | | | 4 | | G2060.70 21-0 | 07 20 60 70 | Site Bridges | | | | | | 1 | | | 4 | | G2060.80 21-0 | 07 20 60 80 | Site Screening Devices | | | | | | | | | 4 | | G2060.85 21-0 | 07 20 60 85 | Site Specialties | | | | | | | | | 3 | | G2080 21-0 | 07 20 80 | Landscaping | | | | | | | | | 4 | | G2080.10 21-0 | 07 20 80 10 | Planting Irrigation | | | | | | | | | 4 | | G2080.20 21-0 | 07 20 80 20 | Turf and Grasses | | | | | | | | | 4 | | G2080.30 21-0 | 07 20 80 30 | Plants | | | | | | | | | 4 | | G2080.50 21-0 | 07 20 80 50 | Planting Accessories | | | | | | | | | 4 | | G2080.70 21-0 | 07 20 80 70 | Landscape Lighting | | | | | | | | | 4 | | G2080.80 21-0 | 07 20 80 80 | Landscaping Activities | | | | | | | | | 2 | | G30 21-0 | 07 30 | Liquid and Gas Site Utilities | | | | | | | | | 3 | | | 07 30 10 | Water Utilities | | | | | | | | | 4 | | G3010.10 21-0 | 07 30 10 10 | Site Domestic Water Distribution | | | | | | | | | 4 | | | 07 30 10 30 | Site Fire Protection Water Distribution | | | | | | | | | 4 | | | 07 30 10 50 | Site Irrigation Water Distribution | | | | | | | | | 3 | | | 07 30 20 | Sanitary Sewerage Utilities | | | | | | | | | 4 | | | 07 30 20 10 | Sanitary Sewerage Utility Connection | | | | | | | | | 4 | | | 07 30 20 20 | Sanitary Sewerage Piping | | | | | | | | | 4 | | | 07 30 20 40 | Utility Septic Tanks | | | | | | | | | 4 | | | 07 30 20 50 | Sanitary Sewerage Structures | | | | | | | | | 4 | | | 07 30 20 60 | Sanitary Sewerage Lagoons | | | | | | | | | 3 | | | 07 30 30 | Storm Drainage Utilities | | | | | | | | | 4 | | | | Storm Drainage Utility Connection | | | | | | | | | 4 | | | 07 30 30 20 | Storm Drainage Piping | | | | | | | | | 4 | | | 07 30 30 30 | Culverts | | | | | | | | | 4 | | | 07 30 30 40 | Site Storm Water Drains | | | | | | | | | 4 | | | 07 30 30 50 | Storm Drainage Pumps | | | | | | | | | 4 | | | 07 30 30 60 | Site Subdrainage | | | | | | | | | 4 | | | 07 30 30 70 | Storm Drainage Ponds and Reservoirs | | | | | | | | | 3 | | | 07 30 50 | Site Energy Distribution | | | | | | / | | | 4 | | | 07 30 50 10 | Site Hydronic Heating Distribution | | | | | | | | | 4 | | | 07 30 50 20 | Site Steam Energy Distribution | | | | | | | | | 4 | | | 07 30 50 40 | Site Hydronic Cooling Distribution | | | | | | | | | 3 | | | 07 30 60 | Site Fuel Distribution | | | | | | | | | 4 | | | 07 30 60 10 | Site Gas Distribution | | | | | | | | | 4 | | | 07 30 60 20 | Site Fuel-Oil Distribution | | | | | | | | | 4 | | | 07 30 60 30 | Site Gasoline Distribution | | | | | | | | | 4 | | | 07 30 60 40 | Site Diesel Fuel Distribution | | | | | | | | | 4 | | | 07 30 60 60 | Site Aviation Fuel Distribution Liquid and Gas Site Utilities
Supplementary | | | | | | | | | 3 | | G3090 21-0 | 07 30 90 | Components | | | | | | | | | 2 | | G40 21-0 | 07 40 | Electrical Site Improvements | | | | | | | | | 3 | | | | Site Electric Distribution Systems | | | | | | | | | 4 | | | 07 40 10 10 | Electrical Utility Services | | | | | | | | | 4 | | | 07 40 10 20 | Electric Transmission and Distribution | | | | | | | | | 4 | | | 07 40 10 30 | Electrical Substations | | | | | | | | | 4 | | | 07 40 10 40 | Electrical Transformers | | | | | | | | | 4 | | | | Electrical Switchgear and Protection Devices | | | | | | | | | 4 | | | 07 40 10 70 | Site Grounding | | | | | | | | | 4 | | | 07 40 10 90 | Electrical Distribution System Instrumentation | | | | | | | | | | | | | and Controls | | | | | | | | | 3 | | | 07 40 50 | Site Lighting | | | | | | | | | 4 | | | 07 40 50 10 | Area Lighting | | | | | | | | | 4 | | | 07 40 50 20 | Flood Lighting | | | | | | | | | 4 | | | 07 40 50 50 | Building Illumination | | | | | | | | | 4 | | G4050.90 21-0 | 07 40 50 90 | Exterior Lighting Supplementary Components | | | | | | | | | 2 | | G50 21-0 | 07 50 | Site Communications | | | | | | | | | 3 | | | 07 50 10 | Site Communications Systems | | | | | | | | | 4 | | | 07 50 10 10 | Site Communications Structures | | | | | | | | | 4 | | | 07 50 10 30 | Site Communications Distribution | | | | | | | | | | | 23020.03 | | | | | | | | _ | | | | | | | | |
 | | | | | | | |---|--|----------|----------------|--|--|------|--|--|--|--|--|--| | 4 | | G5010.50 | 21-07 50 10 50 | Wireless Communications Distribution | | | | | | | | | | 2 | | G90 | 21-07 90 | Miscellaneous Site Construction | | | | | | | | | | 3 | | G9010 | 21-07 90 10 | Tunnels | | | | | | | | | | 4 | | G9010.10 | 21-07 90 10 10 | Vehicular Tunnels | | | | | | | | | | 4 | | G9010.20 | 21-07 90 10 20 | Pedestrian Tunnels | | | | | | | | | | 4 | | G9010.40 | 21-07 90 10 40 | Service Tunnels | | | | | | | | | | 4 | | G9010.90 | 21-07 90 10 90 | Tunnel Construction Related Activities | | | | | | | | | | | | | | Products | | | | | | | | | | 1 | | N/A | 23-13 | Structural and Exterior Enclosure | | | | | | | | | | | | | | Products | | | | | | | | | | 2 | | N/A | 23-13 23 | Mechanical Fasteners, Adhesives, and | | | | | | | | | | | | | | Sealants | | | | | | | | | | 3 | | N/A | 23-13 23 11 | Mechanical Fasteners | | | | | | | | | | 2 | | N/A | 23-13 31 | Structural Concrete Products | | | | | | | | | | 3 | | N/A | 23-13 31 17 | Concrete Formwork | Uniformat ID | Omniclass ID | Element ID | |--|----------------------|----------------------------------|--| | | | | | | ?? | 1 | Α | 21-01 00 00 | SUBSTRUCTURE | | 2 | A10 | 21-01 10 | FOUNDATIONS | | | | | | | 3 | A1010 | 21-01 10 10 | Standard Foundations | | 4 | A1010.10 | 21-01 10 10 10 | Wall Foundations | | 4 | A1010.30 | 21-01 10 10 30 | Column Foundations | | 4 | A1010.90 | 21-01 10 10 90 | Standard Foundation Supplementary Components | | 3 | A1020 | 21-01 10 20 | Special Foundations | | 4 | A1020.10 | 21-01 10 20 10 | Driven Piles | | • | A1020.15 | 21-01 10 20 15 | Bored Piles | | - | A1020.20 | 21-01 10 20 20 | Caissons | | 4 | A1020.30 | 21-01 10 20 30 | Special Foundation Walls | | 4 | A1020.40 | 21-01 10 20 40 | Foundation Anchors | | 4 | A1020.50 | 21-01 10 20 50 | Underpinning | | 4 | A1020.60 | 21-01 10 20 60 | Raft Foundations | | 4 | A1020.70 | 21-01 10 20 70 | Pile Caps | | 4 | A1020.80 | 21-01 10 20 80 | Grade Beams | | 2 | A20 | 21-01 20 | SUBGRADE ENCLOSURES | | 3 | A2010 | 21-01 20 10 | Walls for Subgrade Enclosures | | 4 | A2010.10 | 21-01 20 10 10 | Subgrade Enclosure Wall Construction | | | A2010.20 | 21-01 20 10 20 | Subgrade Enclosure Wall Interior Skin | | 4 | A2010.90 | 21-01 20 10 90 | Subgrade Enclosure Wall Supplementary Components | | 2 | A40 | 21-01 40 | SLABS ON GRADE | | 3 | A4010 | 21-01 40 10 | Standard Slabs-on-Grade | | 3 | A4020 | 21-01 40 20 | Structural Slabs-on-Grade | | 3 | A4030 | 21-01 40 30 | Slab Trenches | | 3 | A4040 | 21-01 40 40 | Pits and Bases | | 3 | A4090 | 21-01 40 90 | Slab-On-Grade Supplementary Components | | 4 | A4090.10 | 21-01 40 90 10 | Perimeter Insulation | | 4 | A4090.20 | 21-01 40 90 20 | Vapor Retarder | | - | A4090.30 | 21-01 40 90 30 | Waterproofing | | 4 | A4090.50
A4090.60 | 21-01 40 90 50
21-01 40 90 60 | Mud Slab Subbase Laver | | 4
2 | A4090.60
A60 | 21-01 40 90 60 | Subbase Layer WATER AND GAS MITIGATION | | 2
3 | A6010 | 21-01 60 10 | Building Subdrainage | | 3
4 | A6010.10 | 21-01 60 10 10 | Foundation Drainage | | +
4 | A6010.10 | 21-01 60 10 20 | Underslab Drainage | | <u>+</u>
3 | A6020 | 21-01 60 20 | Off-Gassing Mitigation | | _ | A6020.10 | 21-01 60 20 10 | Radon Mitigation | | <u>. </u> | A6020.50 | 21-01 60 20 50 | Methane Mitigation | | 2 | A90 | 21-01 90 | SUBSTRUCTURE RELATED ACTIVITIES | | 3 | A9010 | 21-01 90 10 | Substructure Excavation | | | | | | | 4 | A9010.10 | 21-01 90 10 10 | Backfill and Compaction | |---------------|-------------------|-------------------------------|---| | 3 | A9020 | 21-01 90 20 | Construction Dewatering | | 3 | A9030 | 21-01 90 30 | Excavation Support | | 4 | A9030.10 | 21-01 90 30 10 | Anchor Tiebacks | | 4 | A9030.20 | 21-01 90 30 20 | Cofferdams | | 4 | A9030.40 | 21-01 90 30 40 | Cribbing and Walers | | 4 | A9030.60 | 21-01 90 30 60 | Ground Freezing | | 4 | A9030.70
A9040 | 21-01 90 30 70
21-01 90 40 | Slurry Walls Soil Treatment | | 3
1 | В | 21-02 00 00 | SHELL | | 2 | B10 | 21-02 10 | SUPERSTRUCTURE | | 3 | B1010 | 21-02 10 10 | Floor Construction | | _ | | | | | | | | | | 4 | B1010.10 | 21-02 10 10 10 | Floor Structural Frame | | 5 | | | | | 5 | | | | | 5 | | | | | 5 | | | | | 5 | | | | | 5 | | | | | 5 | | | | | 5 | | | | | 5 | | | | | 5
4 | B1010.20 | 21-02 10 10 20 | Floor decks, slabs and topping | | 5 | D1010.20 | 21 02 10 10 20 | Tiour aceks, stabs and topping | | 5 | | | | | 5 | | | | | 5 | | | | | 5 | | | | | | B1010.30 | 21-02 10 10 30 | Balcony Floor Construction | | 4 | B1010.40 | 21-02 10 10 40 | Mezzanine Floor Construction | | 4 | B1010.50 | 21-02 10 10 50 | Ramps | | 4 | B1010.90 | 21-02 10 10 90 | Floor Construction Supplementary Components | | 3 | B1020 | 21-02 10 20 | Roof Construction | | | | | | | | | | | | 4 | B1020.10 | 21-02 10 20 10 | Roof Structural Frame | | _ | B1020.20 | 21-02 10 20 20 | Roof decks, slabs and sheathing | | 4 | B1020.30 | 21-02 10 20 30 | Canopy Construction | | 4 | B1020.90 | 21-02 10 20 90 | Roof Construction Supplementary Components | | 3 | B1080 | 21-02 10 80 | Stairs | | 3 | 22000 | 22 02 10 00 | | | , | D1000 10 | 21 02 10 90 10 | Stair Construction | | 4 | B1080.10 | 21-02 10 80 10 | Stair Construction | | 4 | B1080.30 | 21-02 10 80 30 | Stair Soffits | | 4 | B1080.50 | 21-02 10 80 50 | Stair Railings | | 1 | B1080.60 | 21-02 10 80 60 | Fire Escapes | | 4 | D1080.00 | 21-02 10 80 00 | The Escapes | | 4 | B1080.70 | 21-02 10 80 70 | Metal Walkways | | 1 | B1080.80 | 21-02 10 80 80 | Ladders | | 4
2 | B20 | 21-02 10 80 80 | EXTERIOR VERTICAL ENCLOSURES | | 2
3 | B2010 | 21-02 20 10 | Exterior Walls | | <u>3</u>
4 | B2010.10 | 21-02 20 10 10 | Exterior Wall Veneer | | 4 | B2010.20 | 21-02 20 10 20 | Exterior Wall Construction | | 5 | | | | | 5 | | | | | 5 | | | | | 5 | | | | | 4 | B2010.30 | 21-02 20 10 30 | Exterior Wall Interior Skin | | 4 | B2010.40 | 21-02 20 10 40 | Fabricated Exterior Wall Assemblies | | | | | | | | | | I | |---|----------|----------------------------------|---| | 4 | B2010.50 | 21-02 20 10 50 | Parapets | | 1 | B2010.60 | 21-02 20 10 60 | Equipment Screens | | 4 | B2010.80 | 21-02 20 10 80 | Exterior Wall Supplementary Components | | 4 | B2010.90 | 21-02 20 10 90 | Exterior Wall Opening Supplementary Components | | 3 | B2020 | 21-02 20 20 | Exterior Windows | | 4 | B2020.10 | 21-02 20 20 10 | Exterior Operating Windows | | 4 | B2020.20 | 21-02 20 20 20 | Exterior Fixed Windows | | 4 | B2020.30 | 21-02 20 20 30 | Exterior Window Wall | | 4 | B2020.50 | 21-02 20 20 50 | Exterior Special Function Windows | | 3 | B2050 | 21-02 20 50 | Exterior Doors and Grilles | | 4 | B2050.10 | 21-02 20 50 10 | Exterior Entrance Doors | | 4 | B2050.20 | 21-02 20 50 20 | Exterior Utility Doors | | 4 | B2050.30 | 21-02 20 50 30 | Exterior Oversize Doors | | 4 | B2050.40 | 21-02 20 50 40 | Exterior Special Function Doors | | 4 | B2050.60 | 21-02 20 50 60 | Exterior Grilles | | 4 | B2050.70 | 21-02 20 50 70 | Exterior Gates | | 4 | B2050.90 | 21-02 20 50 90 | Exterior Door Supplementary Components | | 3 | B2070 | 21-02 20 70 | Exterior Louvers and Vents | | 4 | B2070.10 | 21-02 20 70 10 | Exterior Louvers | | • | B2070.50 | 21-02 20 70 50 | Exterior Vents | | 3 | B2080 | 21-02 20 80 | Exterior Wall Appurtenances | | 4 | B2080.10 | 21-02 20 80 10 | Exterior Fixed Grilles and Screens | | 4 | B2080.30 | 21-02 20 80 30 | Exterior Opening Protection Devices | | 4 | B2080.50 | 21-02 20 80 50 | Exterior Balcony Walls and Railings | | 4 | B2080.70 | 21-02 20 80 70 | Exterior Fabrications | | 4 | B2080.80 | 21-02 20 80 80 | Bird Control Devices | | 3 | B2090 | 21-02 20 90 | Exterior Wall Specialties | | 2 | B30 | 21-02 30 | EXTERIOR HORIZONTAL ENCLOSURES | | 3 | B3010 | 21-02 30 10 | Roofing | | 4 | B3010.10 | 21-02 30 10 10 | Steep Slope Roofing | | 4 | B3010.50 | 21-02 30 10 50 | Low-Slope Roofing | | 4 | B3010.70 | 21-02 30 10 70 | Canopy Roofing | | 4 | B3010.90 | 21-02 30 10 90 | Roofing Supplementary Components | | 3 | B3020 | 21-02 30 20 | Roof Appurtenances | | • | B3020.10 | 21-02 30 20 10 | Roof Accessories | | 4 | B3020.30 | 21-02 30 20 30 | Roof Specialties | | 4 | B3020.70 | 21-02
30 20 70 | Rainwater Management | | 3 | B3040 | 21-02 30 40 | Traffic Bearing Horizontal Enclosures | | 4 | B3040.10 | 21-02 30 40 10 | Traffic Bearing Coatings | | 4 | B3040.30 | 21-02 30 40 30
21-02 30 40 50 | Horizontal Waterproofing Membrane Wear Surfaces | | 4 | B3040.50 | | | | 4 | B3040.90 | 21-02 30 40 90 | Horizontal Enclosure Supplementary Components | | 3 | B3060 | 21-02 30 60 | Horizontal Openings | | 4 | B3060.10 | 21-02 30 60 10 | Roof Windows and Skylights | | 4 | B3060.50 | 21-02 30 60 50 | Vents and Hatches | | 4 | B3060.90 | 21-02 30 60 90 | Horizontal Opening Supplementary Components | | 3 | B3080 | 21-02 30 80 | Overhead Exterior Enclosures | | 4 | B3080.10 | 21-02 30 80 10 | Exterior Ceilings | | 4 | B3080.20 | 21-02 30 80 20 | Exterior Soffits | | 4 | B3080.30 | 21-02 30 80 30 | Exterior Bulkheads | | 1 | С | 21-03 00 00 | INTERIORS | | 2 | C10 | 21-03 10 | INTERIOR CONSTRUCTION | | 3 | C1010 | 21-03 10 10 | Interior Partitions | | 4 | C1010.10 | 21-03 10 10 10 | Interior Fixed Partitions | | 5 | | | | | 5 | | | | | 5 | | | | | 4 | C1010.20 | 21-03 10 10 20 | Interior Glazed Partitions | | 4 | C1010.40 | 21-03 10 10 40 | Interior Demountable Partitions | | 4 | C1010.50 | 21-03 10 10 50 | Interior Operable Partitions | | 4 | C1010.70 | 21-03 10 10 70 | Interior Screens | | | | 1 | | | 4 | C1010.90 | 21-03 10 10 90 | Interior Partition Supplementary Components | | 3 | C1020 | 21-03 10 20 | Interior Windows (a.k.a borrowed lites) | |---------------|----------------------|----------------------------------|--| | 4 | C1020.10 | 21-03 10 20 10 | Interior Operating Windows | | 4 | C1020.20 | 21-03 10 20 20 | Interior Fixed Windows | | 4 | C1020.50 | 21-03 10 20 50 | Interior Special Function Windows | | 4 | C1020.90 | 21-03 10 20 90 | Interior Window Supplementary Components | | 3 | C1030 | 21-03 10 30 | Interior Doors | | <u>3</u>
4 | C1030.10 | 21-03 10 30 10 | Interior Swinging Doors | | 4 | C1030.20 | 21-03 10 30 20 | Interior Entrance Doors | | 4 | C1030.25 | 21-03 10 30 25 | Interior Sliding Doors | | 4 | C1030.30 | 21-03 10 30 30 | Interior Folding Doors | | 4 | C1030.40 | 21-03 10 30 40 | Interior Coiling Doors | | 4 | C1030.50 | 21-03 10 30 50 | Interior Panel Doors | | 4 | C1030.70 | 21-03 10 30 70 | Interior Special Function Doors | | 4 | C1030.80 | 21-03 10 30 80 | Interior Access Doors and Panels | | 4 | C1030.90 | 21-03 10 30 90 | Interior Door Supplementary Components | | 3 | C1040 | 21-03 10 40 | Interior Grilles and Gates | | 4 | C1040.10 | 21-03 10 40 10 | Interior Grilles | | 4 | C1040.50 | 21-03 10 40 50 | Interior Gates | | 3
4 | C1060
C1060.10 | 21-03 10 60
21-03 10 60 10 | Raised Floor Construction Access Flooring | | <u>4</u>
4 | C1060.10 | 21-03 10 60 10 | Platform/Stage Floors | | 3 | C1000.30 | 21-03 10 70 | Suspended Ceiling Construction | | <u>э</u>
4 | C1070.10 | 21-03 10 70 10 | Acoustical Suspended Ceilings | | 4 | C1070.20 | 21-03 10 70 20 | Suspended Plaster and Gypsum Board Ceilings | | 4 | C1070.50 | 21-03 10 70 50 | Specialty Suspended Ceilings | | 4 | C1070.70 | 21-03 10 70 70 | Special Function Suspended Ceilings | | 4 | C1070.90 | 21-03 10 70 90 | Ceiling Suspension Components | | 3 | C1090 | 21-03 10 90 | Interior Specialties | | 4 | C1090.10 | 21-03 10 90 10 | Interior Railings and Handrails | | 4 | C1090.15 | 21-03 10 90 15 | Interior Louvers | | 4 | C1090.20 | 21-03 10 90 20 | Information Specialties | | 4 | C1090.25 | 21-03 10 90 25 | Compartments and Cubicles Service Walls | | 4 | C1090.30
C1090.35 | 21-03 10 90 30
21-03 10 90 35 | Wall and Door Protection | | 4
4 | C1090.40 | 21-03 10 90 40 | Toilet, Bath, and Laundry Accessories | | 4 | C1090.45 | 21-03 10 90 45 | Interior Gas Lighting | | 4 | C1090.50 | 21-03 10 90 50 | Fireplaces and stoves | | 4 | C1090.60 | 21-03 10 90 60 | Safety Specialties | | 4 | C1090.70 | 21-03 10 90 70 | Storage Specialties | | 4 | C1090.90 | 21-03 10 90 90 | Other Interior Specialties | | 2 | C20 | 21-03 20 | INTERIOR FINISHES | | 3 | C2010 | 21-03 20 10 | Wall Finishes | | 4 | C2010.10 | 21-03 20 10 10 | Tile Wall Finish | | 4 | C2010.20 | 21-03 20 10 20 | Wall Paneling | | 4 | C2010.30 | 21-03 20 10 30 | Wall Coverings | | 4 | C2010.35 | 21-03 20 10 35 | Wall Carpeting | | 4 | C2010.50 | 21-03 20 10 50 | Stone Facing Special Wall Surfacing | | 4 | C2010.60
C2010.70 | 21-03 20 10 60
21-03 20 10 70 | Special Wall Surfacing Wall Painting and Coating | | 4
1 | C2010.70
C2010.80 | 21-03 20 10 70 | Acoustical Wall Treatment | | 4
4 | C2010.80 | 21-03 20 10 80 | Wall Finish Supplementary Components | | 4
3 | C2010.90 | 21-03 20 10 30 | Interior Fabrications | | э
3 | C2030 | 21-03 20 30 | Flooring | | <u>.</u>
4 | C2030.10 | 21-03 20 30 10 | Flooring Treatment | | 4 | C2030.20 | 21-03 20 30 20 | Tile Flooring | | 4 | C2030.30 | 21-03 20 30 30 | Specialty Flooring | | 4 | C2030.40 | 21-03 20 30 40 | Masonry Flooring | | 4 | C2030.45 | 21-03 20 30 45 | Wood Flooring | | 4 | C2030.50 | 21-03 20 30 50 | Resilient Flooring | | 4 | C2030.60 | 21-03 20 30 60 | Terrazzo Flooring | | 4 | C2030.70 | 21-03 20 30 70 | Fluid-Applied Flooring | | 4 | C2030.75 | 21-03 20 30 75 | Carpeting | | 4 | C2030.80 | 21-03 20 30 80 | Athletic Flooring | | 4 | C2030.85 | 21-03 20 30 85 | Entrance Flooring | | | | | | | 4 | C2030.90 | 21-03 20 30 90 | Flooring Supplementary Components | |---------------|----------|----------------|---| | 4
3 | C2030.90 | 21-03 20 30 90 | Stair Finishes | | <u>3</u>
4 | C2040 | 21-03 20 40 20 | Tile Stair Finish | | ÷ | C2040.20 | 21-03 20 40 20 | Masonry Stair Finish | | 4 | C2040.45 | 21-03 20 40 45 | Wood Stair Finish | | 4 | | | Resilient Stair Finish | | 4 | C2040.50 | 21-03 20 40 50 | Terrazzo Stair Finish | | 4 | C2040.60 | 21-03 20 40 60 | | | 4 | C2040.75 | 21-03 20 40 75 | Carpeted Stair Finish | | 3 | C2050 | 21-03 20 50 | Ceiling Finishes | | 4 | C2050.10 | 21-03 20 50 10 | Plaster and Gypsum Board Finish | | 4 | C2050.20 | 21-03 20 50 20 | Ceiling Paneling | | 4 | C2050.70 | 21-03 20 50 70 | Ceiling Painting and Coating | | 4 | C2050.80 | 21-03 20 50 80 | Acoustical Ceiling Treatment | | 4 | C2050.90 | 21-03 20 50 90 | Ceiling Finish Supplementary Components | | 1 | D | 21-04 00 00 | SERVICES | | 2 | D10 | 21-04 10 | CONVEYING | | 3 | D1010 | 21-04 10 10 | Vertical Conveying Systems | | 4 | D1010.10 | 21-04 10 10 10 | Elevators | | 4 | D1010.20 | 21-04 10 10 20 | Lifts | | 4 | D1010.30 | 21-04 10 10 30 | Escalators | | 4 | D1010.50 | 21-04 10 10 50 | Dumbwaiters | | 4 | D1010.60 | 21-04 10 10 60 | Moving Ramps | | 3 | D1030 | 21-04 10 30 | Horizontal Conveying Systems | | 4 | D1030.10 | 21-04 10 30 10 | Moving Walks | | 4 | D1030.30 | 21-04 10 30 30 | Turntables | | 4 | D1030.50 | 21-04 10 30 50 | Passenger Loading Bridges | | 4 | D1030.70 | 21-04 10 30 70 | People Movers | | 3 | D1050 | 21-04 10 50 | Material Handling | | 4 | D1050.10 | 21-04 10 50 10 | Cranes | | <u>.</u>
4 | D1050.20 | 21-04 10 50 20 | Hoists | | <u>.</u>
4 | D1050.30 | 21-04 10 50 30 | Derricks | | 4 | D1050.40 | 21-04 10 50 40 | Conveyors | | 4 | D1050.50 | 21-04 10 50 50 | Baggage Handling Equipment | | <u></u> | D1050.60 | 21-04 10 50 60 | Chutes | | <u></u> | D1050.70 | 21-04 10 50 70 | Pneumatic Tube Systems | | 3 | D1080 | 21-04 10 80 | Operable Access Systems | | ے
4 | D1080.10 | 21-04 10 80 10 | Suspended Scaffolding | | <u>4</u>
4 | D1080.20 | 21-04 10 80 20 | Rope Climbers | | ÷ | D1080.30 | 21-04 10 80 30 | Elevating Platforms | | 4 | | 21-04 10 80 30 | Powered Scaffolding | | 4 | D1080.40 | | <u> </u> | | 4 | D1080.50 | 21-04 10 80 50 | Building Envelope Access | | 2 | D20 | 21-04 20 | PLUMBING | | 3 | D2010 | 21-04 20 10 | Domestic Water Distribution | | ے
4 | D2010.10 | 21-04 20 10 10 | Facility Potable-Water Storage Tanks | | <u>-</u>
4 | D2010.20 | 21-04 20 10 20 | Domestic Water Equipment | | <u></u> | D2010.40 | 21-04 20 10 40 | Domestic Water Piping | | 4 | D2010.60 | 21-04 20 10 60 | Plumbing Fixtures | | <u>4</u>
4 | D2010.90 | 21-04 20 10 90 | Domestic Water Distribution Supplementary Components | | _ | | | | | 3 | D2020 | 21-04 20 20 | Sanitary Drainage | | 4 | D2020.10 | 21-04 20 20 10 | Sanitary Sewerage Equipment | | 4 | D2020.30 | 21-04 20 20 30 | Sanitary Sewerage Piping | | 4 | D2020.90 | 21-04 20 20 90 | Sanitary Drainage Supplementary Components | | _ | 22022 | 24.04.22.25 | | | 3 | D2030 | 21-04 20 30 | Building Support Plumbing Systems | | 4 | D2030.10 | 21-04 20 30 10 | Stormwater Drainage Equipment | | 4 | D2030.20 | 21-04 20 30 20 | Stormwater Drainage Piping | | 4 | D2030.30 | 21-04 20 30 30 | Facility Stormwater Drains | | 4 | D2030.60 | 21-04 20 30 60 | Gray Water Systems | | 4 | D2030.90 | 21-04 20 30 90 | Building Support Plumbing System Supplementary Components | | _ | D2050 | 24 04 20 50 | Constant Company 1.51 | | 3 | D2050 | 21-04 20 50 | General Service Compressed-Air | | 3 | D2060 | 21-04 20 60 | Process Support Plumbing Systems | | 4 | D2060.10 | 21-04 20 60 10 | Compressed-Air Systems | | 4 | D2060.30 | 21-04 20 60 30 | Gas Systems | |---------------|----------|----------------|---| | <u>-</u>
4 | D2060.40 | 21-04 20 60 40 | Chemical-Waste Systems | | <u>.</u>
4 | D2060.50 | 21-04 20 60 50 | Processed Water Systems | | <u>.</u>
4 | D2060.90 | 21-04 20 60 90 | Process Support Plumbing System Supplementary Components | | | | | | | 2 | D30 | 21-04 30 | HVAC | | | | | | | 3 | D3010 | 21-04 30 10 | Facility Fuel Systems | | 4 | D3010.10 | 21-04 30 10 10 | Fuel Piping | | <u>.</u>
4 | D3010.30 | 21-04 30 10 30 | Fuel Pumps | | <u>.</u>
4 | D3010.50 | 21-04 30 10 50 | Fuel Storage Tanks | | <u>.</u>
3 | D3020 | 21-04 30 20 | Heating Systems | | <u>-</u>
4 | D3020.10 | 21-04 30 20 10 | Heat Generation | | 4 | D3020.30 | 21-04 30 20
30 | Thermal Heat Storage | | 4 | D3020.70 | 21-04 30 20 70 | Decentralized Heating Equipment | | 4 | D3020.90 | 21-04 30 20 90 | Heating System Supplementary Components | | 3 | D3030 | 21-04 30 30 | Cooling Systems | | 4 | D3030.10 | 21-04 30 30 10 | Central Cooling | | <u>.</u>
4 | D3030.30 | 21-04 30 30 30 | Evaporative Air-Cooling | | <u>.</u>
4 | D3030.50 | 21-04 30 30 50 | Thermal Cooling Storage | | <u>.</u>
4 | D3030.70 | 21-04 30 30 70 | Decentralized Cooling | | <u>.</u>
4 | D3030.90 | 21-04 30 30 90 | Cooling System Supplementary Components | | 3 | D3050 | 21-04 30 50 | Facility HVAC Distribution Systems | | <u> </u> | D3050.10 | 21-04 30 50 10 | Facility Hydronic Distribution | | 4 | D3050.30 | 21-04 30 50 30 | Facility Steam Distribution | | 4 | D3050.50 | 21-04 30 50 50 | HVAC Air Distribution | | 4 | D3050.90 | 21-04 30 50 90 | Facility Distribution Systems Supplementary Components | | | | | | | 3 | D3060 | 21-04 30 60 | Ventilation | | 4 | D3060.10 | 21-04 30 60 10 | Supply Air | | 4 | D3060.20 | 21-04 30 60 20 | Return Air | | 4 | D3060.30 | 21-04 30 60 30 | Exhaust Air | | 4 | D3060.40 | 21-04 30 60 40 | Outside Air | | 4 | D3060.60 | 21-04 30 60 60 | Air-to-Air Energy Recovery | | 4 | D3060.70 | 21-04 30 60 70 | HVAC Air Cleaning | | 4 | D3060.90 | 21-04 30 60 90 | Ventilation Supplementary Components | | 3 | D3070 | 21-04 30 70 | Special Purpose HVAC Systems | | 4 | D3070.10 | 21-04 30 70 10 | Snow Melting | | 2 | D40 | 21-04 40 | FIRE PROTECTION | | _ | D4010 | 21 04 40 10 | Fire Cunnyaggien | | 3 | D4010 | 21-04 40 10 | Fire Suppression | | 4 | D4010.10 | 21-04 40 10 10 | Water-Based Fire-Suppression | | 4 | D4010.50 | 21-04 40 10 50 | Fire-Extinguishing Fire Suppression Supplementary Components | | 4 | D4010.90 | 21-04 40 10 90 | Fire Suppression Supplementary Components | | 3 | D4030 | 21-04 40 30 | Fire Protection Specialties | | <u>.</u>
4 | D4030.10 | 21-04 40 30 10 | Fire Protection Cabinets | | 4 | D4030.30 | 21-04 40 30 30 | Fire Extinguishers | | 4 | D4030.50 | 21-04 40 30 50 | Breathing Air Replenishment Systems | | 4 | D4030.70 | 21-04 40 30 70 | Fire Extinguisher Accessories | | 2 | D50 | 21-04 50 | ELECTRICAL | | 3 | D5010 | 21-04 50 10 | Facility Power Generation | | 4 | D5010.10 | 21-04 50 10 10 | Packaged Generator Assemblies | | <u></u>
4 | D5010.20 | 21-04 50 10 20 | Battery Equipment | | <u></u>
4 | D5010.30 | 21-04 50 10 30 | Photovoltaic Collectors | | <u>-</u>
4 | D5010.40 | 21-04 50 10 40 | Fuel Cells | | <u></u>
4 | D5010.60 | 21-04 50 10 60 | Power Filtering and Conditioning | | <u></u>
4 | D5010.70 | 21-04 50 10 70 | Transfer Switches | | <u>+</u>
4 | D5010.90 | 21-04 50 10 90 | Facility Power Generation Supplementary Components | | _ | | | , components | | 3 | D5020 | 21-04 50 20 | Electrical Service and Distribution | | 4 | D5020.10 | 21-04 50 20 10 | Electrical Service | | 4 | D5020.30 | 21-04 50 20 30 | Power Distribution | | 4 | D5020.70 | 21-04 50 20 70 | Facility Grounding | | 4 | D5020.90 | 21-04 50 20 90 | Electrical Service and Distribution Supplementary Components | | 4 | | | | | 1 | D5030.10 | 21-04 50 30 10 | Branch Wiring System | |--------|-------------------|----------------|--| | 4 | | | | | 4 | D5030.50 | 21-04 50 30 50 | Wiring Devices Constal Purpose Floatrical Power Supplementary Companyors | | 4 | D5030.90 | 21-04 50 30 90 | General Purpose Electrical Power Supplementary Components | | 3 | D5040 | 21-04 50 40 | Lighting | | 4 | D5040.10 | 21-04 50 40 10 | Lighting Control | | 4 | D5040.20 | 21-04 50 40 20 | Branch Wiring for Lighting | | 4 | D5040.50 | 21-04 50 40 50 | Lighting Fixtures | | 4 | D5040.90 | 21-04 50 40 90 | Lighting Supplementary Components | | 3 | D5080 | 21-04 50 80 | Miscellaneous Electrical Systems | | 4 | D5080.10 | 21-04 50 80 10 | Lightning Protection | | 4 | D5080.40 | 21-04 50 80 40 | Cathodic Protection | | 4 | D5080.70 | 21-04 50 80 70 | Transient Voltage Suppression | | 4 | D5080.90 | 21-04 50 80 90 | Miscellaneous Electrical Systems Supplementary Components | | 2 | D60 | 21-04 60 | COMMUNICATIONS | | 3 | D6010 | 21-04 60 10 | Data Communications | | 4 | D6010.10 | 21-04 60 10 10 | Data Communications Network and Equipment | | 4 | D6010.20 | 21-04 60 10 20 | Data Communications Hardware | | 4 | D6010.30 | 21-04 60 10 30 | Data Communications Peripheral Data Equipment | | 4 | D6010.50 | 21-04 60 10 50 | Data Communications Software | | 4
4 | D6010.50 | 21-04 60 10 60 | Data Communication Program and Integration Services | | _ | | | | | 3 | D6020 | 21-04 60 20 | Voice Communications Voice Communications Switching and Pouting Equipment | | 4 | D6020.10 | 21-04 60 20 10 | Voice Communications Switching and Routing Equipment | | 4 | D6020.20 | 21-04 60 20 20 | Voice Communications Terminal Equipment | | 4 | D6020.30 | 21-04 60 20 30 | Voice Communications Messaging | | 4 | D6020.40 | 21-04 60 20 40 | Call Accounting | | 4 | D6020.50 | 21-04 60 20 50 | Call Management | | 3 | D6030 | 21-04 60 30 | Audio-Video Communication | | 4 | D6030.10 | 21-04 60 30 10 | Audio-Video Systems | | 4 | D6030.50 | 21-04 60 30 50 | Electronic Digital Systems | | 3 | D6060 | 21-04 60 60 | Distributed Communications and Monitoring | | 4 | D6060.10 | 21-04 60 60 10 | Distributed Audio-Video | | 4 | D6060.30 | 21-04 60 60 30 | Healthcare Communications and Monitoring | | 4 | D6060.50 | 21-04 60 60 50 | Distributed Systems | | 3 | D6090 | 21-04 60 90 | Communications Supplementary Components | | 2 | D70 | 21-04 70 | ELECTRONIC SAFETY AND SECURITY | | _ | D7010 | 21-04 70 | Access Control and Intrusion Detection | | 3 | D7010
D7010.10 | 21-04 70 10 | | | 4 | | | Access Control | | 4 | D7010.50 | 21-04 70 10 50 | Intrusion Detection | | 3 | D7030 | 21-04 70 30 | Electronic Surveillance | | 4 | D7030.10 | 21-04 70 30 10 | Video Surveillance | | 4 | D7030.50 | 21-04 70 30 50 | Electronic Personal Protection | | 3 | D7050 | 21-04 70 50 | Detection and Alarm | | 4 | D7050.10 | 21-04 70 50 10 | Fire Detection and Alarm | | 4 | D7050.20 | 21-04 70 50 20 | Radiation Detection and Alarm | | 4 | D7050.30 | 21-04 70 50 30 | Fuel-Gas Detection and Alarm | | 4 | D7050.40 | 21-04 70 50 40 | Fuel-Oil Detection and Alarm | | 4 | D7050.50 | 21-04 70 50 50 | Refrigeration Detection and Alarm | | 4 | D7050.60 | 21-04 70 50 60 | Water Intrusion Detection and Alarm | | 3 | D7070 | 21-04 70 70 | Electronic Monitoring and Control | | 4 | D7070.10 | 21-04 70 70 10 | Electronic Detection Monitoring and Control | | 3 | D7090 | 21-04 70 90 | Electronic Safety and Security Supplementary Components | | 2 | D80 | 21-04 80 | INTEGRATED AUTOMATION | | 3 | D8010 | 21-04 80 10 | Integrated Automation Facility Controls | | 4 | D8010.10 | 21-04 80 10 10 | Integrated Automation Control of Equipment | | 4 | D8010.20 | 21-04 80 10 20 | Integrated Automation Control of Conveying Equipment | | 4 | D8010.30 | 21-04 80 10 30 | Integrated Automation Control of Fire-Suppression Systems | | • | | | - | | 4 | D8010.40 | 21-04 80 10 40 | Integrated Automation Control of HVAC Systems | | 4 | D8010.50 | 21-04 80 10 50 | Integrated Automation Control of Plumbing Systems | |-------------------|----------------------|----------------------------------|---| | 4 | D8010.60 | 21-04 80 10 60 | Integrated Automation Control of Electrical Systems | | 4 | D8010.70 | 21-04 80 10 70 | Integrated Automation Control of Communication Systems | | 4 | D8010.80 | 21-04 80 10 80 | Integrated Automation Control of Electronic Safety and Security Syste | | 4 | D8010.90 | 21-04 80 10 90 | Integrated Automation Supplementary Components | | _ | _ | 21-05 00 00 | EQUIPMENT & FURNISHINGS | | 1
2 | E
E10 | 21-05 10 00 | EQUIPMENT | | 2
3 | E1010 | 21-05 10 10 | Vehicle and Pedestrian Equipment | | э
4 | E1010.10 | 21-05 10 10 10 | Vehicle Servicing Equipment | |
4 | E1010.30 | 21-05 10 10 30 | Interior Parking Control Equipment | | 4 | E1010.50 | 21-05 10 10 50 | Loading Dock Equipment | | <u>.</u>
4 | E1010.70 | 21-05 10 10 70 | Interior Pedestrian Control Equipment | | 3 | E1030 | 21-05 10 30 | Commercial Equipment | | 4 | E1030.10 | 21-05 10 30 10 | Mercantile and Service Equipment | | 4 | E1030.20 | 21-05 10 30 20 | Vault Equipment | | 4 | E1030.25 | 21-05 10 30 25 | Teller and Service Equipment | | 4 | E1030.30 | 21-05 10 30 30 | Refrigerated Display Equipment | | 4 | E1030.35 | 21-05 10 30 35 | Commercial Laundry and Dry Cleaning Equipment | | 4 | E1030.40 | 21-05 10 30 40 | Maintenance Equipment | | <u>4</u>
4 | E1030.40 | 21-05 10 30 40 | Hospitality Equipment | | 4
4 | E1030.55 | 21-05 10 30 55 | Unit Kitchens | | 4
4 | E1030.60 | 21-05 10 30 60 | Photographic Processing Equipment | | 4 | E1030.70 | 21-05 10 30 70 | Postal, Packaging, and Shipping Equipment | | <u>.</u>
4 | E1030.75 | 21-05 10 30 75 | Office Equipment | | 4 | E1030.80 | 21-05 10 30 80 | Foodservice Equipment | | 3 | E1040 | 21-05 10 40 | Institutional Equipment | | 4 | E1040.10 | 21-05 10 40 10 | Educational and Scientific Equipment | | 4 | E1040.20 | 21-05 10 40 20 | Healthcare Equipment | | 4 | E1040.40 | 21-05 10 40 40 | Religious Equipment | | 4 | E1040.60 | 21-05 10 40 60 | Security Equipment | | 4 | E1040.70 | 21-05 10 40 70 | Detention Equipment | | 3 | E1060 | 21-05 10 60 | Residential Equipment | | 4 | E1060.10 | 21-05 10 60 10 | Residential Appliances | | 4 | E1060.50 | 21-05 10 60 50 | Retractable Stairs | | 4 | E1060.70 | 21-05 10 60 70 | Residential Ceiling Fans | | 3 | E1070 | 21-05 10 70 | Entertainment and Recreational Equipment | | 4 | E1070.10 | 21-05 10 70 10 | Theater and Stage Equipment | | 4 | E1070.20 | 21-05 10 70 20 | Musical Equipment | | 4 | E1070.50
E1070.60 | 21-05 10 70 50
21-05 10 70 60 | Athletic Equipment Recreational Equipment | | 4 | E1070.60 | 21-05 10 70 00 |
Other Equipment | | 3
4 | E1090.10 | 21-05 10 90 10 | Solid Waste Handling Equipment | | 4
4 | E1090.30 | 21-05 10 90 30 | Agricultural Equipment | | 4
4 | E1090.40 | 21-05 10 90 40 | Horticultural Equipment | | 4
4 | E1090.60 | 21-05 10 90 60 | Decontamination Equipment | | 2 | E20 | 21-05 20 | FURNISHINGS | | - | E2010 | 21-05 20 10 | Fixed Furnishings | | 4 | E2010.10 | 21-05 20 10 10 | Fixed Art | | 4 | E2010.20 | 21-05 20 10 20 | Window Treatments | | 4 | E2010.30 | 21-05 20 10 30 | Casework | | 4 | E2010.70 | 21-05 20 10 70 | Fixed Multiple Seating | | 4 | E2010.90 | 21-05 20 10 90 | Other Fixed Furnishings | | 3 | E2050 | 21-05 20 50 | Movable Furnishings | | 4 | E2050.10 | 21-05 20 50 10 | Movable Art | | 4 | E2050.30 | 21-05 20 50 30 | Furniture | | 4 | E2050.40 | 21-05 20 50 40 | Accessories | | 4 | E2050.60 | 21-05 20 50 60 | Movable Multiple Seating | | 4 | E2050.90 | 21-05 20 50 90 | Other Movable Furnishings | | 1 | F | 21-06 00 00 | SPECIAL CONSTRUCTION AND DEMOLITION | | | 1 | 1 | | | 3 | F1010 | 21-06 10 10 | Integrated Construction | |--------|----------------------|----------------------------------|---| | 1 | F1010.10 | 21-06 10 10 10 | Building Modules | | 4 | F1010.50 | 21-06 10 10 50 | Manufactured/Fabricated Rooms | | 4 | F1010.70 | 21-06 10 10 70 | Modular Mezzanines | | _ | F1020 | 21-06 10 20 | Special Structures | | 4 | F1020.10 | 21-06 10 20 10 | Fabric Structures | | 4 | F1020.20 | 21-06 10 20 20 | Space Frames | | 4 | F1020.30 | 21-06 10 20 30 | Geodesic Structures | | 4 | F1020.40 | 21-06 10 20 40 | Manufacturer-Engineered Structures | | ÷ | F1020.60 | 21-06 10 20 60 | Manufactured Canopies | | 4 | F1020.65 | 21-06 10 20 65 | Rammed Earth Construction | | ÷ | F1020.70 | 21-06 10 20 70 | Towers | | 3 | F1030 | 21-06 10 30 | Special Function Construction | | • | F1030.10 | 21-06 10 30 10 | Sound and Vibration Control | | 4 | F1030.30 | 21-06 10 30 30 | Seismic Control | | • | F1030.50 | 21-06 10 30 50 | Radiation Protection | | 3 | F1050 | 21-06 10 50 | Special Facility Components Pools | | ÷ | F1050.10 | 21-06 10 50 10 | Interior Fountains | | 4 | F1050.20 | 21-06 10 50 20 | Interior Water Features | | ÷ | F1050.30
F1050.40 | 21-06 10 50 30
21-06 10 50 40 | | | 4 | F1050.40
F1050.50 | 21-06 10 50 40 | Aquariums Amusement Park Structures and Equipment | | 4 | F1050.50 | 21-06 10 50 60 | Ice Rinks | | 4
4 | F1050.60
F1050.70 | 21-06 10 50 60 | Animal Containment | | 4
3 | F1050.70 | 21-06 10 60 | Athletic and Recreational Special Construction | | ر | | | and need editional openion contained on | | 4 | F1060.10 | 21-06 10 60 10 | Indoor Soccer Boards | | 4 | F1060.20 | 21-06 10 60 20 | Safety Netting | | 4 | F1060.30 | 21-06 10 60 30 | Arena Football Boards | | 4 | F1060.40 | 21-06 10 60 40 | Floor Sockets | | 4 | F1060.50 | 21-06 10 60 50 | Athletic and Recreational Court Walls | | 4 | F1060.60 | 21-06 10 60 60 | Demountable Athletic Surfaces | | 3 | F1080 | 21-06 10 80 | Special Instrumentation | | 4 | F1080.10 | 21-06 10 80 10 | Stress Instrumentation | | 4 | F1080.20 | 21-06 10 80 20 | Seismic Instrumentation | | 4 | F1080.40 | 21-06 10 80 40 | Meteorological Instrumentation | | • | F1080.60 | 21-06 10 80 60 | Earth Movement Monitoring | | 2 | F20 | 21-06 20 00 | FACILITY REMEDIATION | | 3 | F2010
F2010.10 | 21-06 20 10
21-06 20 10 10 | Hazardous Materials and Remediation Transportation and Disposal of Hazardous Materials | | 4 | 12010.10 | 21-00 20 10 10 | Transportation and Disposal of Hazardous Materials | | 4 | F2010.20 | 21-06 20 10 20 | Asbestos Remediation | | 4 | F2010.30 | 21-06 20 10 30 | Lead Remediation | | 4 | F2010.40 | 21-06 20 10 40 | Polychlorinate Biphenyl Remediation | | 4 | F2010.50 | 21-06 20 10 50 | Mold Remediation | | 2 | F30 | 21-06 30 00 | DEMOLITION | | 3 | F3010 | 21-06 30 10 | Structure Demolition | | 4 | F3010.10 | 21-06 30 10 10 | Building Elements Demolition | | 4 | F3010.30 | 21-06 30 10 30 | Tower Demolition | | 4 | F3010.50 | 21-06 30 10 50 | Bridge Demolition | | 4 | F3010.70 | 21-06 30 10 70 | Dam Demolition | | 3 | F3030 | 21-06 30 30 | Selective Demolition | | 4 | F3030.10 | 21-06 30 30 10 | Selective Bldg Demo | | 4 | F3030.30 | 21-06 30 30 30 | Selective Interior Demolition | | 4 | F3030.50 | 21-06 30 30 50 | Selective Bridge Demolition | | 4 | F3030.70 | 21-06 30 30 70 | Selective Historic Demolition | | 3 | F3050 | 21-06 30 50 | Structure Moving | | 4 | F3050.10 | 21-06 30 50 10 | Structure Relocation | | 4 | F3050.30 | 21-06 30 50 30 | Structure Raising | | 1 | G
G10 | 21-07 00 00 | SITEWORK | | 2 | G10
G1010 | 21-07 10 00
21-07 10 10 | SITE PREPARATIONS Site Clearing | | 3 | G1010
G1010.10 | 21-07 10 10 | Site Clearing Clearing and Grubbing | | 4 | G1010.10
G1010.30 | 21-07 10 10 10 | Tree and Shrub Removal and Trimming | | 4 | G1010.30
G1010.50 | 21-07 10 10 30 | Earth Stripping and Stockpiling | | 4
3 | G1010.30 | 21-07 10 10 30 | Site Elements Demolition | | 3 | 31020 | 0, 10 20 | and Lienter Demonder | | | | | | | _ | 64000.40 | 24 07 40 20 40 | Lucity B. Inc. | |------------------|---|---|--| | 4 | G1020.10 | 21-07 10 20 10 | Utility Demolition | | 4 | G1020.30 | 21-07 10 20 30 | Infrastructure Demolition | | 4 | G1020.50 | 21-07 10 20 50 | Selective Site Demolition | | 3 | G1030 | 21-07 10 30 | Site Element Relocations | | 4 | G1030.10 | 21-07 10 30 10 | Utility Relocation | | 3 | G1050 | 21-07 10 50 | Site Remediation | | 4 | G1050.10 | 21-07 10 50 10 | Physical Decontamination | | 4 | G1050.15 | 21-07 10 50 15 | Chemical Decontamination | | 4 | G1050.20 | 21-07 10 50 20 | Thermal Decontamination | | 4 | G1050.25 | 21-07 10 50 25 | Biological Decontamination | | 4 | G1050.30 | 21-07 10 50 30 | Remediation Soil Stabilization | | 4 | G1050.40 | 21-07 10 50 40 | Site Containment | | 4 | G1050.45 | 21-07 10 50 45 | Sinkhole Remediation | | 4 | G1050.50 | 21-07 10 50 50 | Hazardous Waste Drum Handling | | 4 | G1050.60 | 21-07 10 50 60 | Contaminated Site Material Removal | | 4 | G1050.80 | 21-07 10 50 80 | Water Remediation | | 3 | G1070 | 21-07 10 70 | Site Earthwork | | 4 | G1070.10 | 21-07 10 70 10 | Grading | | 4 | G1070.20 | 21-07 10 70 20 | Excavation and Fill | | 4 | G1070.30 | 21-07 10 70 30 | Embankments | | 4 | G1070.35 | 21-07 10 70 35 | Erosion and Sedimentation Controls | | 4 | G1070.40 | 21-07 10 70 40 | Soil Stabilization | | 4 | G1070.45 | 21-07 10 70 45 | Rock Stabilization | | 4 | G1070.50 | 21-07 10 70 50 | Soil Reinforcement | | 4 | G1070.55 | 21-07 10 70 55 | Slope Protection | | 4 | G1070.60 | 21-07 10 70 60 | Gabions | | 4 | G1070.65 | 21-07 10 70 65 | Riprap | | 4 | G1070.70 | 21-07 10 70 70 | Wetlands | | 4 | G1070.80 | 21-07 10 70 80 | Earth Dams | | 4 | G1070.90 | 21-07 10 70 90 | Site Soil Treatment | | 2 | G20 | 21-07 20 | SITE IMPROVEMENTS | | 3 | G2010 | 21-07 20 10 | Roadways | | 4 | G2010.10 | 21-07 20 10 10 | Roadway Pavement | | 4 | G2010.20 | 21-07 20 10 20 | Roadway Curbs and Gutters | | 4 | G2010.40 | 21-07 20 10 40 | Roadway Appurtenances | | 4 | G2010.70 | 21-07 20 10 70 | Roadway Lighting | | 4 | G2010.80 | 21-07 20 10 80 | Vehicle Fare Collection | | 3 | G2020 | 21-07 20 20 | Parking Lots | | 4 | G2020.10 | 21-07 20 20 10 | Parking Lot Pavement | | 4 | G2020.20 | 21-07 20 20 20 | Parking Lot Curbs and Gutters | | 4 | G2020.40 | 21-07 20 20 40 | Parking Lot Appurtenances | | 4 | G2020.70 | 21-07 20 20 70 | Parking Lot Lighting | | 4 | G2020.80 | 21-07 20 20 80 | Exterior Parking Control Equipment | | 3 | G2030 | 21-07 20 30 | Pedestrian Plazas and Walkways | | 4 | G2030.10 | 21-07 20 30 10 | Pedestrian Pavement | | 4 | G2030.20 | 21-07 20 30 20 | Pedestrian Pavement Curbs and Gutters | | 4 | G2030.30 | 21-07 20 30 30 | Exterior Steps and Ramps | | 4 | G2030.40 | 21-07 20 30 40 | Pedestrian Pavement Appurtenances | | 4 | G2030.70 | 21-07 20 30 70 | Plaza and Walkway Lighting | | 4 | G2030.80 | 21-07 20 30 80 | Exterior Pedestrian Control Equipment | | 3 | G2040 | 21-07 20 40 | Airfields | | <u>3</u> | G2040.10 | 21-07 20 40 10 | Aviation Pavement | | 4 | G2040.20 | 21-07 20 40 10 | Aviation Pavement Curbs and Gutters | | 4 | G2040.40 | 21-07 20 40 40 | Aviation Pavement Appurtenances | | 4 | G2040.40
G2040.70 | 21-07 20 40 70 | Airfield Lighting | | | G2040.70
G2040.80 | 21-07 20 40 70 | Airfield Signaling and Control Equipment | | 4 | G2040.80
G2050 | 21-07 20 40 80 | Athletic, Recreational, and Playfield Areas | | 3 | | | Athletic Areas Athletic Areas | | | G2050.10
G2050.30 | 21-07 20 50 10 | | | 4 | | 21-07 20 50 30 | Recreational Areas | | 4 | | | Playfield Areas | | 4 | G2050.50 | 21-07 20 50 50 | | | 4
4
3 | G2050.50
G2060 | 21-07 20 60 | Site Development | | 4
4
3
4 | G2050.50
G2060
G2060.10 | 21-07 20 60
21-07 20 60 10 | Site Development Exterior Fountains | | 4
3
4 | G2050.50
G2060
G2060.10
G2060.20 | 21-07 20 60
21-07 20 60 10
21-07 20 60 20 | Site Development Exterior Fountains Fences and Gates | | 4
4
3
4 | G2050.50
G2060
G2060.10 | 21-07 20 60
21-07 20 60 10 | Site Development Exterior Fountains | | 4 | G2060.35
G2060.40 | 21-07 20 60 35
21-07 20 60 40 | Flagpoles Covers and Shelters | |---|----------------------|----------------------------------|---| | 4 | | | | | 4 | G2060.45 | 21-07 20 60 45 | Exterior Gas Lighting | | 4 | G2060.50 | 21-07 20 60 50 | Site Equipment | | 4 | G2060.60 | 21-07 20 60 60 | Retaining Walls | | 4 | G2060.70 | 21-07 20 60 70 | Site Bridges | | 4 | G2060.80 | 21-07 20 60 80 | Site Screening Devices | | 4 | G2060.85 | 21-07 20 60 85 | Site Specialties | | 3 | G2080 | 21-07 20 80 | Landscaping | | 4 |
G2080.10 | 21-07 20 80 10 | Planting Irrigation | | 4 | G2080.20 | 21-07 20 80 20 | Turf and Grasses | | 4 | G2080.30 | 21-07 20 80 30 | Plants | | 4 | G2080.50 | 21-07 20 80 50 | Planting Accessories | | 4 | G2080.70 | 21-07 20 80 70 | Landscape Lighting | | 4 | G2080.80 | 21-07 20 80 80 | Landscaping Activities | | 2 | G30 | 21-07 30 | LIQUID AND GAS SITE UTILITIES | | 3 | G3010 | 21-07 30 10 | Water Utilities | | 4 | G3010.10 | 21-07 30 10 10 | Site Domestic Water Distribution | | 4 | G3010.30 | 21-07 30 10 30 | Site Fire Protection Water Distribution | | 4 | G3010.50 | 21-07 30 10 50 | Site Irrigation Water Distribution | | 3 | G3020 | 21-07 30 20 | Sanitary Sewerage Utilities | | 4 | G3020.10 | 21-07 30 20 10 | Sanitary Sewerage Utility Connection | | 4 | G3020.20 | 21-07 30 20 20 | Sanitary Sewerage Piping | | 4 | G3020.40 | 21-07 30 20 40 | Utility Septic Tanks | | 4 | G3020.50 | 21-07 30 20 50 | Sanitary Sewerage Structures | | 4 | G3020.60 | 21-07 30 20 60 | Sanitary Sewerage Lagoons | | 3 | G3030 | 21-07 30 30 | Storm Drainage Utilities | | 4 | G3030.10 | 21-07 30 30 10 | Storm Drainage Utility Connection | | 4 | G3030.20 | 21-07 30 30 20 | Storm Drainage Piping | | 4 | G3030.30 | 21-07 30 30 30 | Culverts | | 4 | G3030.40 | 21-07 30 30 40 | Site Storm Water Drains | | 4 | G3030.50 | 21-07 30 30 50 | Storm Drainage Pumps | | 4 | G3030.60 | 21-07 30 30 60 | Site Subdrainage | | 4 | G3030.70 | 21-07 30 30 70 | Storm Drainage Ponds and Reservoirs | | 3 | G3050 | 21-07 30 50 | Site Energy Distribution | | 4 | G3050.10 | 21-07 30 50 10 | Site Hydronic Heating Distribution | | 4 | G3050.20 | 21-07 30 50 20 | Site Steam Energy Distribution | | 4 | G3050.40 | 21-07 30 50 40 | Site Hydronic Cooling Distribution | | 3 | G3060 | 21-07 30 60 | Site Fuel Distribution | | 4 | G3060.10 | 21-07 30 60 10 | Site Gas Distribution | | 4 | G3060.20 | 21-07 30 60 20 | Site Fuel-Oil Distribution | | 4 | G3060.30 | 21-07 30 60 30 | Site Gasoline Distribution | | 4 | G3060.40 | 21-07 30 60 40 | Site Diesel Fuel Distribution | | 4 | G3060.60 | 21-07 30 60 60 | Site Aviation Fuel Distribution | | 3 | G3090 | 21-07 30 90 | Liquid and Gas Site Utilities Supplementary Components | | _ | | - | . , , , , , , , , , , , , , , , , , , , | | 2 | G40 | 21-07 40 | ELECTRICAL SITE IMPROVEMENTS | | 3 | G4010 | 21-07 40 10 | Site Electric Distribution Systems | | 4 | G4010.10 | 21-07 40 10 10 | Electrical Utility Services | | 4 | G4010.20 | 21-07 40 10 20 | Electric Transmission and Distribution | | 4 | G4010.30 | 21-07 40 10 30 | Electrical Substations | | 4 | G4010.40 | 21-07 40 10 40 | Electrical Transformers | | 4 | G4010.50 | 21-07 40 10 50 | Electrical Switchgear and Protection Devices | | 4 | G4010.70 | 21-07 40 10 70 | Site Grounding | | 4 | G4010.90 | 21-07 40 10 90 | Electrical Distribution System Instrumentation and Controls | | _ | 04050 | 24 07 46 52 | en et te | | 3 | G4050 | 21-07 40 50 | Site Lighting | | 4 | G4050.10 | 21-07 40 50 10 | Area Lighting | | 4 | G4050.20 | 21-07 40 50 20 | Flood Lighting | | 4 | G4050.50 | 21-07 40 50 50 | Building Illumination | | 4 | G4050.90 | 21-07 40 50 90 | Exterior Lighting Supplementary Components | | 2 | G50 | 21-07 50 | SITE COMMUNICATIONS | | 2 | G5010 | 21-07 50 10 | Site Communications Systems | | 3 | G5010
G5010.10 | 21-07 50 10 | Site Communications Systems Site Communications Structures | | 4 | OJULU.IU | 71-01 30 10 10 | Site communications offuctures | | 4 | G5010.50 | 21-07 50 10 50 | Wireless Communications Distribution | |----|----------|----------------|--| | 2 | G90 | 21-07 90 | MISCELLANEOUS SITE CONSTRUCTION | | 3 | G9010 | 21-07 90 10 | Tunnels | | 4 | G9010.10 | 21-07 90 10 10 | Vehicular Tunnels | | 4 | G9010.20 | 21-07 90 10 20 | Pedestrian Tunnels | | 4 | G9010.40 | 21-07 90 10 40 | Service Tunnels | | 4 | G9010.90 | 21-07 90 10 90 | Tunnel Construction Related Activities | | ?? | | | | | 2 | | | | | | | | | | 2 | | | | | | | | | | 2 | | | | | 2 | | | | | 2 | | | | | | | | | | | | | | ## BIMForum LOD Specification 2020 Part II ## Spaces | Baseline This work is licensed under the Creative Commons | | | | Part | 1 - Attribute Description | | oject-Specific | | |--|-----------|-----------------|-------------------|--------------------------|---------------------------|--------|----------------|-----------| | Additional Attribution-NonCommercial 4.0 International License | | | | | | | Estimating | | | Attribute | Data Type | Units - Imp. | . Units - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | Submittal | | Rooms | | | | | Attributes for Rooms | | | | | RoomName | Text | | 0 | office, Corridor | | | | | | RoomNumber | Text | | R | -210, 315 | | | | | | RoomType | Text | | 0 | mniClass Table 13 | | | | | | FloorName | Text | | 2, | , East 3rd | | | | | | Description | Text | | C | EO Office, Main Corridor | | | | | | Areas | | | | | Attributes for Rooms | | | | | AreaName | Text | | F: | ast Wing, Offices | Action (Company) | | | | | Description | Text | | | , East 3rd | | | | | | Floors | | | | | Attributes for Rooms | | | | | FloorName | | | | | | | | | | FloorNumber | Text | | | , East 3rd | | | | | | loorType | Text | | | mniClass Table 14 | | | | | | Description | Text | | R | -210, 315 | | | | | | Target LOD | Number | | 10 | 00, 200, 300, 350, 400 | | | | | | Current LOD | Number | | 10 | 00, 200, 300, 350, 400 | | | | | | arget Area | Number | ft ² | m ² 20 | 010, 31500 | _ | | | | | | | | | | | | | | | | | | | ## BIMForum LOD Specification 2020 Part II ## A, B - Structural Steel | Baseline This work is licensed under the Creative Commons | | | | Part 1 - A | Attribute Description | Part 2 - Project-Specific Milestones (Examples | | | | | | | |---|-------------------|--------------------------------------|--------------------------|-------------------------|---|--|------------|---|-----------|--|--|--| | dditional Attribution-NonCommercial 4.0 International License | | | | | | | Estimating | | | | | | | ttribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | | Submittal | | | | | AISC Shape Type & Size | Text | | | options: [specific "HSS | · | | | | | | | | | | | | | 6x6x1/4"] | | | | | | | | | | ireproofed | Logical | | | T/F, 1/0 | | | | | | | | | | Veight in pounds/foot | Decimal | | | | | | | | | | | | | ASTM Material Grade | Text | | | options: [A992, etc] | | | | | | | | | | Coating | Text | | | options: [galvanized, | | | | | | | | | | | | | | painted for exterior | | | | | | | | | | | | | | exposure, etc] | | | | | | | | | | Architectural Exposed Structural Steel | Text | | | | R, Note the five options are Standard Structural Steel, AESS-1, AESS-2, AESS-3, AESS-4, Custom. These | | | | | | | | | | | | | AESS-4, Custom | options are from the AISC Code of Standard Practice 2016. | | | | | | | | | | Necesia | | | | Converse Niverbox | | | | | | | | | Fabrication Sequence Number | Number | | | 100 200 200 250 400 | SequenceNumber | | | | | | | | | Farget LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | | Shon Submittal Parameters | | | | | n | - | | | | | | | | Shop Submittal Parameters | Datotimo | yyyy-mm-ddThh:mm | MAN mm ddThh | | () (Date EC) | | | | | | | | | Date - Issued For Construction | Datetime | | | | {DateIFC} | | | | | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mm | | | {DatePermitted} | | | | | | | | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mm | | | {DateReceivedForShopDet} | | | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approval (OF) | Datetime Datetime | yyyy-mm-ddThh:mm
yyyy-mm-ddThh:mm | | | {DateOutForApproval} {DateFinalForFab} | | | | | | | | | Date - Final Erection Drawings Approved for Fab | | yyyy-mm-ddThh:mm | | | {DateFinalForFab} {DateFabStart} | | | | | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mm | | | {DateFabEnd} | | | | | | | | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mm | | | {DateFabShip} | | | | | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mm | | | {DateFabReceived} | | | | | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mm | | | {DateFrankeceiveu} {DateErected} | | | | | | | | | Date - Erection | Datetime | yyyy-mm-ddThh:mm | | | | | | | | | | | | Date - Inspected | Datetime | yyyy-mm-aa mm.mm | yyyy-iiiii-uu iiiii.iiii | | {DateInspected} | | | | | | | | | Material | | | | | | | | | | | | | | Deck Fasteners | | | | | | | | | | | | | | Typical Weld Specifications | | | | | | | | | | | | | | Camber | | | | | | | | | | | | | | Shear Studs | 1 | | | | | | | | | | | | | Toppings | 1 | | | | | | | | | | | | | οργιιβο | | | | | | | | | | | | | | Structural steel materials | | | | | | | | | | | | | | Finishes, i.e. painted, galvanized, etc | 1 | | | | | | | | 1 | | | | | misnes, ne. painteu, garvanizeu, etc | 1 | | | | | | | | 1 | 1 | | | | | | | | 1 | 1 | | | | | | | | 1 | 1 | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 | | | | | | | | 1 | | | | | | 1 | 1 | | İ | | 1 | | 1 | 1 | | | | | A, B Miscellaneous Steel | | | | | | | | | - | | |---|-----------
------------------|------------------|-------------------------|--|--------|------------------------------|-------|-----------|---| | Baseline Additional Attribution-NonCommercial 4.0 International License | | | | Part 1 | Attribute Description | | oject-Specific
Estimating | T | | | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | Ī | | AISC Shape & Size | Text | | | | | | | | | П | | Fireproofed | Logical | | | T/F, 1/0 | | | | | | | | Weight in pounds/foot | Number | lb./ft. | | | | | | | | | | ASTM Material Grade | Text | | | options: [A992, etc] | | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | Coating | Text | | | options: [galvanized, | | | | | | | | | | | | painted for exterior | | | | | | | | | | | | exposure, etc] | | | | | | L | | Architectural Exposed Structural Steel | Logical | | | T/F, 1/0 | Related NAAMM guidelines should be outlined in the projects BxP. | | | | | L | | Fabrication Sequence Number | Number | | | | SequenceNumber | | | | | L | | Shop Submittal Parameters | | | | | {} | | | | | | | Date - Issued For Construction | Datetime | yyyy-mm-ddThh:mm | | | {DateIFC} | | | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | ı | {DatePermitted} | | | | | | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mm | | | {DateReceivedForShopDet} | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateOutForApproval} | | | | | | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFinalForFab} | | | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFabStart} | | | | | | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFabEnd} | | | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFabShip} | | | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFabReceived} | | | | | | | Date - Erection | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateErected} | | | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | ı | {DateInspected} | | | | | | | | | | | | | | | | | | | Finishes, i.e. painted, galvanized, etc | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons | | | | Dart 1 / | Attribute Description | Dart 2 Dre | ject-Specific | Milestones | (Evamples) | |---|-----------|-----------------|--|---|-----------------------------|------------|---------------|------------|------------| | Additional Attribution-NonCommercial 4.0 International | | | | rait1-7 | Attribute Description | | Estimating | | | | luultioliai | Data Tara | Hartha Lara | 11 | 0.4 | Camarantana | | | | | | ttribute | Data Type | Units - Imp. | Units - Metric | | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | lember Type | Text | | | (0) Foundation (1) Beam (2)
Column (3) Slab (4) Wall | | | | | | | oncrete Compression Strength | Number | PSI | | | Example: 3000 PSI | | | | | | einforcing Steel Flexture | Number | PSI | | | Example: 60,000 PSI | | | | | | einforcing Steel Shear | Number | PSI | | | Example: 60,000 PSI | | | | | | arget LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | urrent LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | | | | | | | | | | laterial | | | | T/5 4/0 | | | | | | | kterior Exposure | Logical | | | T/F, 1/0 | | | | | | | hop Submittal Parameters | Datatima | www.mm ddThhimm | avaav mm ddThhima | | {DataIEC} | | | | | | Date - Issued For Construction Date - Permitted | | | n yyyy-mm-ddThh:mm
n yyyy-mm-ddThh:mm | | {DateIFC} {DatePermitted} | | | | | | Date - Permitted Date - received for Shop Detailing | | | nyyyy-mm-ddThh:mm | | {DateReceivedForShopDet} | | | | | | Date - received for Snop Detailing
Date - Detailing Submitted for EOR review \ Out For Approv | | | nyyyy-mm-ddThh:mm | | {DateOutForApproval} | | | | | | Date - Detailing Submitted for EOK review \ Out For Approvence Date - Final Erection Drawings Approved for Fab | | | nyyyy-mm-ddThh:mm | | {DateFinalForFab} | | | | | | Date - Final Election Drawings Approved for Fab | | | nyyyy-mm-ddThh:mm | | {DateFabStart} | | | | | | Date - Fabrication End | | | yyyy-mm-ddThh:mm | | {DateFabEnd} | | | | | | Date - Fabrication Shipped | | | yyyy-mm-ddThh:mm | | {DateFabShip} | | | | | | Date - Fabrication Received | | | yyyy-mm-ddThh:mm | | {DateFabReceived} | | | | | | Date - Erection | | | yyyy-mm-ddThh:mm | | {DateErected} | | | | | | Date - Inspected | | | yyyy-mm-ddThh:mm | | {DateInspected} | | | | | | • | | | | | | | | | | | inish | Text | | | A,B,C per ACI 117 | Specify by face of concrete | | | | | | Noisture Retarder | | | | | | | | | | | ir Entrainment | | | | | | | | | | | ggregate Size | | | | | | | | | | | pecific Deck Material | | | | | | | | | | | eck Fasteners | | | | | | | | | | | ypical Weld Specifications | | | | | | | | | | | amber | | | | | | | | | | | hear Studs | | | | | | | | | | | oppings | mbeds and Anchor Rods | | | | | | | | | | | ggregate, Clear cover | | | | | | | | | | | einforcing Spacing | | | | | | | | | | | ve Loads | | | | | | | | | | | near Reinforcing and Stud Rails | | | | | | | | | | | einforcing Post-Tension Profiles and Strand Locations | | | | | | | | | | | namfers | | | | | | | | | | | at the original confile | | | | | | | | | | | st-tension profile | | | | | | | | | | | rands | 1 | 1 | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | |--|-----------|------------------|------------------|---|-----------------------------|------------|-------------|----------------|------------|------------| | A, B - Precast Concrete | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons. | | | | Part 1 - <i>A</i> | Attribute Description | | Part 2 - Pr | oject-Specific | Milestones | (Examples) | | Additional Attribution-NonCommercial 4.0 International | | | | | | | | Estimating | | | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | Member Type | Text | | | (0) Foundation (1) Beam (2)
Column (3) Slab (4) Wall | | | | | | | | Concrete Compression Strength | | PSI | | | Example: 3000 PSI | | | | | | | Reinforcing Steel Flexture | | PSI | | | Example: 60,000 PSI | | | | | | | Reinforcing Steel Shear | | PSI | | | Example: 60,000 PSI | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | Member Casting Number | | | | | | | | | | | | Exterior Exposure | Logical | | | T/F, 1/0 | | | | | | | | Shop Submittal Parameters | | | | | | | | | | | | Date - Issued For Construction | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | ı | {DateIFC} | | | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DatePermitted} | | | | | | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | ı | {DateReceivedForShopDet} | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateOutForApproval} | | | | | | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFinalForFab} | | | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | 1 | {DateFabStart} | | | | | | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFabEnd} | | | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | ı | {DateFabShip} | | | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | ו | {DateFabReceived} | | | | | | | Date - Erection | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | ı | {DateErected} | | | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | ו | {DateInspected} | | | | | | | Camber | | | | | | | | | | | | Finish | Text | | | A,B,C per ACI 117 | Specify by face of concrete | | | | | | | Material | Post-tension profile | | | | | | | | | | | | Strands | | | | | | | | | | | | A, B - Steel Open Web Joists | | | | | | | | | | |---|--------------------|-------------------------|------------------|---------------------------------------|--|--------------|---------------|------------|------------| | This work is licensed under the Creative Commons | | | | Part 1 - A | Attribute Description | Part 2 - Pro | ject-Specific | Milestones | (Examples) | | dditional Attribution-NonCommercial 4.0 International License | | | | | | Estimating | Estimating | LEED Cert. | LEED Cert | | ttribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | pe | Text | | | K, LH, DLH, Joist Girder | {JoistType} | | | | | | I Joist Designation | Text | | | options: [specific "18K3"] | {JoistDesignation} |
 | | | | verall Length | Number | FT | | | {OAL} | | | | | | pist Depth | Number | in | | | {JoistDepth} | | | | | | arget LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | urrent LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | pprox. Wt (lbs./ft.) | Number | #/ft | | | {JoistApproxWt} | | | | | | RFD Load Total Safe | Number | Pounds / Lineal
Foot | | | {Total_Load_LRFD_Safe} safe factored uniformly distributed load-carrying capacities | | | | | | RFD Load Deflection 1/360 | Number | Pounds / Lineal
Foot | | | {Total_Load_LRFD_360} unfactored uniform load, which will produce an approximate joist deflection of 1/360 of the span | | | | | | nop Submittal Parameters | | | | | 8 | | | | | | Date - Issued For Construction | Datetime | | yyyy-mm-ddThh:mm | | {DateIFC} | | | | | | Date - Permitted | Datetime | | yyyy-mm-ddThh:mm | | {DatePermitted} | | | | | | Date - received for Shop Detailing | | | yyyy-mm-ddThh:mm | | {DateReceivedForShopDet} | | | | | | Date - Detailing Submitted for EOR review \ Out For Approval (C | | | yyyy-mm-ddThh:mm | | {DateOutForApproval} | | | | | | Date - Final Erection Drawings Approved for Fab | Datetime | | yyyy-mm-ddThh:mm | | {DateFinalForFab} | | | | | | Date - Fabrication Start | | | yyyy-mm-ddThh:mm | | {DateFabStart} | | | | | | Date - Fabrication End | Datetime | | yyyy-mm-ddThh:mm | | {DateFabEnd} | | | | | | Date - Fabrication Shipped | Datetime | | yyyy-mm-ddThh:mm | | {DateFabShip} | | | | | | Date - Fabrication Received | Datetime | | yyyy-mm-ddThh:mm | | {DateFabReceived} | | | | | | Date - Erection | Datetime | | yyyy-mm-ddThh:mm | | {DateErected} | | | | | | Date - Inspected
SD Load Total Safe | Datetime
Number | Pounds / Lineal | yyyy-mm-ddThh:mm | | {DateInspected} {Total_Load_ASD_Safe} | | | | | | SU LUAU TULAI SATE | Number | Foot | | | [[Ottol=Loud_Mod_State] | | | | | | SD Load Deflection 1/360 | Number | Pounds / Lineal
Foot | | | {Total_Load_ASD_360} | | | | | | reproofed | Logical | | | T/F, 1/0 | {JoistFireproofed} | | | | | | rchitectural Exposed Structural Steel | Logical | | | T/F, 1/0 | {JoistAESS} | | | | | | abrication Sequence Number | Number | | | | {JoistFabSequ} SequenceNumber | | | | | | pan, Base Length | Number | FT | | | {SpanBase} | | | | | | esign Span | | | | | {SpanDesign} | | | | | | pproximate Camber Based on Top Chord Length | | | | | {Camber} | | | | | | xtensions (Y/N) | | | | | {} | | | | | | op Chord Extensions Left (Start End) | Logical | | | T/F, 1/0 | {TCXL} | | | | | | op Chord Extensions Right (Stop End) | Logical | | | T/F, 1/0 | {TCXR} | | | | | | ottom Chord Extension Left | Logical | | | T/F, 1/0 | {BCXL} | | | | | | ottom Chord Extension Right | Logical | | | T/F, 1/0 | {BCXR} | | | | | | engths | | | | | ()
(non) | | | | | | ottom Chord Extension Left Length | Number | in | | | {BCXLL} | | | | | | Sottom Chord Extension Right Length | Number | in | | | {BCXRL} | | | | | | op Chord Extensions Left Length | Number | in
in | | | {TCXIL} | | | | | | op Chord Extensions Right | Number
Number | in | | 0/2 | {TCXRL} {RecycleContent} | | | | | | ecycle Content istance From Point of Fabrication to Site | Number | | | %
Miles | {FabDistToSite} | | | | | | ngineering Parameters | Number | | | i i i i i i i i i i i i i i i i i i i | () | | | | | | ist Moment Of Inertia | Number | in^4 | | | {ij} | | | | | | ection Modulous | Number | in^3 | | | {Sx} | | | | | | ppe "X" Low End ("X": 12") | Number | in | | | {SlopeXLow} | | | | | | ope "X" High End ("X": 12") | Number | in | | | {SlopeXHigh} | | | | | | earing Depth Left | Number | in | | | {BearingDepthLeft} | | | | | | earing Depth Right | Number | in | | | {BearingDepthRight} | | | | | | pproximate Duct Opening Size Round | Number | in | | | 0 | | | | | | proximate Duct Opening Size Square | Number | in | | | 8 | | | | | | pproximate Duct Opening Size Rectangular (Width x Height) | Number | in | | | {} | | | | | | pproximate Duct Opening Size Rectangular (Width x Height) | | | | | {} | | | | | | hord Yield Strength | Number | | | | {FyChord} Refer to SJI Specification. | | | | | | All Other Yield Strength | Number | | | | {FyOther} Refer to current SJI Specification | | | | | | Number Of Rows Of Top Chord Bridging (Estimated per SJI Table | le) Number | | | {TopChordBrdRowReqEst} | | |---|------------|-------------------------|----------|---|--| | Bearing Seat Attachment Left (start end) | | | | {BearingTypeLeft} Bearing Seat Attachment Type: (1) Masonry or Concrete (2) Steel (3) Other | | | Bearing Seat Attachment Right (stop end) | | | | {BearingTypeRight} Bearing Seat Attachment Type: (1) Masonry or Concrete (2) Steel (3) Other | | | Bearing Seat Uplift Left | | | | {BrUpliftLeft} Is the joist seat in uplift | | | Bearing Seat Uplift Right | | | | {BrUpliftRight} Is the joist seat in uplift | | | Laterally Unbraced Top Chords (Y/N) | Logical | | T/F, 1/0 | {LatUnbacedTopChord} | | | Wood Nailers on Top Chored (Y/N) | Logical | | T/F, 1/0 | {WoodNailers} | | | | | | | {} | | | LRFD Load Total Safe | Number | Pounds / Lineal
Foot | | {} safe factored uniformly distributed load-carrying capacities | | | LRFD Load Deflection 1/360 | Number | Pounds / Lineal
Foot | | {} unfactored uniform load, which will produce an approximate joist deflection of 1/360 of the span | | | ASD Load Total Safe | Number | Pounds / Lineal
Foot | | 0 | | | ASD Load Deflection 1/360 | Number | Pounds / Lineal
Foot | | 0 | | | | | FOOL | | ₽ | | | Top Chord Extension Type (None, S or R) Left | Number | | | {TCExTypeLeft} Top Chord Extension Type: (0) None (1) "S", top angles of top chord (2) top and bottom angle of top chord | | | Top Chord Extension Type (None, S or R) Right | Number | | | {TCExTypeRight} Top Chord Extension Type: (0) None (1) "S", top angles of top chord (2) top and bottom angle of top chord | | | | | | | | | | Non-standard joist seat depths and/or sloping joist seat | | | | | | | Member designation, load capacity and deflection criteria | | | | | | | Design loads and location of concentrated loads | | | | | | | Material requirements | | | | | | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | | |--|-----------|------------------|-----------------------|---|-----------------------------|----|------------|---------------|------------|------------|-----| | A, B - Precast Concrete | | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons | | | | Part 1 - A | attribute Description | Pa | rt 2 - Pro | ject-Specific | Milestones | (Examples) | | | Additional Attribution-NonCommercial 4.0 International | | | | | | | | Estimating | | | | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | | Est. 1 | Bid Pkg. | Check | Submittal | | | Member Type | Text | | | (0) Foundation (1) Beam (2)
Column (3) Slab (4) Wall | | | | | | | | | Concrete Compression Strength | | PSI | | | Example: 3000 PSI | | | | | | | | Reinforcing Steel Flexture | | PSI | | | Example: 60,000 PSI | | | | | | | | Reinforcing Steel Shear | | PSI | | | Example: 60,000 PSI | | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | Member Casting Number | | | | | | | | | | | | | Exterior Exposure | Logical | | | T/F, 1/0 | | | | | | | | | Shop Submittal Parameters | | | | | | | | | | | ĺ | | Date - Issued For Construction | Datetime | yyyy-mm-ddThh:mn | n
yyyy-mm-ddThh:mr | n | {DateIFC} | | | | | | ĺ | | Date - Permitted | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mr | n | {DatePermitted} | | | | | | | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mr | n | {DateReceivedForShopDet} | | | | | | ĺ | | Date - Detailing Submitted for EOR review \ Out For Approv | Datetime | yyyy-mm-ddThh:mn | nyyyy-mm-ddThh:mr | m | {DateOutForApproval} | | | | | | ĺ | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mn | nyyyy-mm-ddThh:mr | m | {DateFinalForFab} | | | | | | ĺ | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mr | n | {DateFabStart} | | | | | | ĺ | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mr | n | {DateFabEnd} | | | | | | ĺ | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mn | n
yyyy-mm-ddThh:mr | n | {DateFabShip} | | | | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mr | n | {DateFabReceived} | | | | | | | | Date - Erection | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mr | n | {DateErected} | | | | | | ĺ | | Date - Inspected | Datetime | yyyy-mm-ddThh:mn | nyyyy-mm-ddThh:mr | n | {DateInspected} | | | | | | | | Camber | | | | | | | | | | | | | Finish | Text | | | A,B,C per ACI 117 | Specify by face of concrete | | | | | | | | Material | | | | , , . p = | | | | | | | i – | | | | | | | | | | | | | | | Post-tension profile | | | | | | | | | | | | | Strands | | | | | | | | | | | | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | |---|-----------|------------------|------------------|-------------------------|--------------------------|--------|------------------|--------------|------------|--------| | A, B - Metal Deck | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons | | | | Part 1 - / | Attribute Description | Part 2 | - Project-Specif | c Milestones | (Examples) | + | | Additional Attribution-NonCommercial 4.0 International | | | | | | | ting Estimatin | | | | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples |
Commentary | Est | 1 Bid Pkg. | Check | Submittal | | | Deck Type | Number | | | | | | | | | T | | Yield Strength (Fy) | | PSI | | | | | | | | | | Deck Thickness | Number | in | | | Example 1.5" | | | | | | | Deck Flute Width | Number | in | | | Example 1.5" | | | | | | | Diaphragm Load and Deflection criteria | | | | | | | | | | | | Deck Material | | | | | | | | | | | | Deck Fasteners | | | | | | | | | | | | Typical Weld Specifications | | | | | | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | Shop Submittal Parameters | | | | | | | | | | + | | Date - Issued For Construction | Datetime | vvvv-mm-ddThh:mn | yyyy-mm-ddThh:mm |) | {DateIFC} | | | | | + | | Date - Permitted | | | yyyy-mm-ddThh:mm | | {DatePermitted} | | | | | + | | Date - received for Shop Detailing | | | yyyy-mm-ddThh:mm | | {DateReceivedForShopDet} | | | | | + | | Date - Detailing Submitted for EOR review \ Out For Approve | | | yyyy-mm-ddThh:mm | | {DateOutForApproval} | | | | | + | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | 1 | {DateFinalForFab} | | | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | 1 | {DateFabStart} | | | | | | | Date - Fabrication End | Datetime | | yyyy-mm-ddThh:mm | | {DateFabEnd} | | | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | 1 | {DateFabShip} | | | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | 1 | {DateFabReceived} | | | | | | | Date - Erection | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | 1 | {DateErected} | | | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | 1 | {DateInspected} | | | | | L | | | | | | | | | | | | \bot | | Finishes, i.e. painted, galvanized, etc | | | | | | | | | | + | | Diaphragm load and deflection criteria | | | | | | | | | | + | | Deck material | | | | | | | | | | T | | Deck fasteners | | | | | | | | | | 1 | | Typical weld specifications | | | | | | | | | | 1 | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | | |--|-----------|------------------|------------------|--------------------------------|--------------------------|------------|--------|------------------------------|-------|--|---| | A, B Cold Formed Metal Framing | | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons Additional License | | | | Part 1 - | Attribute Description | | | oject-Specific
Estimating | 1 | | | | | Data Type | Units - Imp. | Units - Metric | Option Examples | | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | | Member Type | Number | | | (0) Beam (1) Column
(2)Wall | | | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | Shop Submittal Parameters | | | | | | | | | | | - | | Date - Issued For Construction | Datetime | | yyyy-mm-ddThh:mm | | {DateIFC} | | | | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DatePermitted} | | | | | | | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateReceivedForShopDet} | | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approve | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateOutForApproval} | | | | | | | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateFinalForFab} | | | | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateFabStart} | | | | | | | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateFabEnd} | | | | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateFabShip} | | | | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateFabReceived} | | | | | | | | Date - Erection | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateErected} | | | | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | | {DateInspected} | | | | | | | | | | | | | | | | | | | | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | |--|-----------|------------------|-------------------|---|--------------------------|--------------|---------------|------------|------------|----------| | A, B - Wood | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons | | | | Part 1 - A | ttribute Description | Part 2 - Pro | ject-Specific | Milestones | (Examples) | | | Additional Attribution-NonCommercial 4.0 International | | | | | | | Estimating | | | | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | | Member Type | Text | | | (0) Foundation (1) Beam (2)
Column (3) Deck (4) Wall | | | | | | | | Flextural Strength (Fb) | | PSI | | | | | | | | | | Shear Strength (Fv) | | PSI | | | | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | ĺ | | Current LOD | Text | | | 100, 200, 300, 350, 400 | Wet Use | Logical | | | T/F, 1/0 | | | | | | <u> </u> | | Repetitive Member Use | Logical | | | T/F, 1/0 | | | | | | <u> </u> | | Shop Submittal Parameters | | | | | | | | | | | | Date - Issued For Construction | Datetime | yyyy-mm-ddThh:mn | nvvvv-mm-ddThh:mn | 1 | {DateIFC} | | | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mn | | | {DatePermitted} | | | | | i | | Date - received for Shop Detailing | Datetime | | yyyy-mm-ddThh:mn | | {DateReceivedForShopDet} | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | Datetime | | nyyyy-mm-ddThh:mn | | {DateOutForApproval} | | | | | ĺ | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | 1 | {DateFinalForFab} | | | | | ĺ | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | 1 | {DateFabStart} | | | | | ĺ | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | 1 | {DateFabEnd} | | | | | ĺ | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | 1 | {DateFabShip} | | | | | ĺ | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | 1 | {DateFabReceived} | | | | | ĺ | | Date - Erection | Datetime | | yyyy-mm-ddThh:mn | | {DateErected} | | | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mn | nyyyy-mm-ddThh:mn | 1 | {DateInspected} | | | | | | | Finish | Text | | | | | | | | | \vdash | | Deck Orientation | | | | | | | | | | | | Deck Material Layer thickness | | | | | | | | | | | | Diaphragm Load and Deflection Criteria | | | | | | | | | | | | Deck Material | | | | | | | | | | | | Deck Fasteners | | | | | | | | | | | | Member designation | | | | | | | | | | <u> </u> | | Load capacity | | | | | | | | | | _ | | deflection criteria | | | | | | | | | | | | Design loads | | | | | | | | | | — | | Baseline This work is licensed under the Creative Commons | | | | Part 1 | Attribute Description | D | art 2 - Drai | ect-Specific | Milestones | (Evamples) | Æ | |---|-----------|------------------|-------------------|-------------------------|--------------------------|----|--------------|--------------|------------|------------|---------| | Additional Attribution-NonCommercial 4.0 International | | | | Pail 1-7 | Attribute Description | | | Estimating | | | | | Additional | | | T | | | E: | | | | | | | | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | | Est. 1 | Bid Pkg. | Check | Submittal | 4 | | Wall Type | | | | | | | | | | | 4 | | Wall Total Thickness | | | | 7 5/8" | | | | | | | 4 | | Wall Core Masonry Thickness | | | | 7 5/8" | | | | | | | 4 | | Wall Finish Face 1 | | | | 3 5/8" | | | | | | | 4 | | Wall Finish Face 2 | | | | | | | | | | | 4 | | Wall Is Load Bearing | Logical | | | T/F, 1/0 | IsLoadBearning | | | | | | 4 | | Block Type | | | | CMUx8x8x16 | | | | | | | 4 | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | \perp | | Current LOD | Text | | | 100, 200, 300, 350, 400 | ┸ | | Shop Submittal Parameters | | | | | | | | | | | | | Date - Issued For Construction | | | yyyy-mm-ddThh:mm | | {DateIFC} | | | | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mn | nyyyy-mm-ddThh:mm | 1 | {DatePermitted} | | | | | | | | Date - received for Shop Detailing | | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateReceivedForShopDet} | | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approve | | , , , , | yyyy-mm-ddThh:mm | | {DateOutForApproval} | | | | | | | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFinalForFab} | | | | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFabStart} | | | | | | | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | l | {DateFabEnd} | | | | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFabShip} | | | | | | T | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | 1 | {DateFabReceived} | | | | | | Τ | | Date - Erection | Datetime | yyyy-mm-ddThh:mn | nyyyy-mm-ddThh:mm | l | {DateErected} | | | | | | T | | Date - Inspected | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mm | 1 | {DateInspected} | | | | | | | | · | | | | | | | | | | | T | | Reinforcing | | | | | | | | | | | 1 | | Mortar and grout defined | | | | | | | | | | | T |
| Reinforcement and steel lintels required at openings | | | | | | | | | | | 1 | | Material | | | | | | | | | | | T | | Slope | | | | | | | | | | | T | | Spacing | | | | | | | | | | | 1 | | Design Loads | | | | | | | | | | | T | | Deflection criteria | | | | | | | | | | | T | | Baseline This work is licensed under the Creative Commons | | | | Part 1 - <i>F</i> | Attribute Description | Part 2 - | Project-Specific | Milestones | (Examples) | |--|-----------|------------------|------------------|-------------------------|--------------------------|----------|------------------|------------|------------| | Additional Attribution-NonCommercial 4.0 International | | | | | · | | ng Estimating | | | | liconco | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | Grating Type | | | | | , | | | | | | Material | | | | Steel, Alum, Fiberglass | | | | | | | Finish | | | | Painted, Galvanized, | | | | | | | | | | | Anodized | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | | | | | | | | | | Shop Submittal Parameters | | | | | | | | | | | Date - Issued For Construction | | | yyyy-mm-ddThh:mn | | {DateIFC} | | | | | | Date - Permitted | | | yyyy-mm-ddThh:mn | | {DatePermitted} | | | | | | Date - received for Shop Detailing | | | yyyy-mm-ddThh:mn | | {DateReceivedForShopDet} | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | | | yyyy-mm-ddThh:mn | | {DateOutForApproval} | | | | | | Date - Final Erection Drawings Approved for Fab | | | yyyy-mm-ddThh:mn | | {DateFinalForFab} | | | | | | Date - Fabrication Start | | | yyyy-mm-ddThh:mn | | {DateFabStart} | | | | | | Date - Fabrication End | | | yyyy-mm-ddThh:mn | | {DateFabEnd} | | | | | | Date - Fabrication Shipped | | | yyyy-mm-ddThh:mn | | {DateFabShip} | | | | | | Date - Fabrication Received | | | yyyy-mm-ddThh:mn | | {DateFabReceived} | | | | | | Date - Erection | | | yyyy-mm-ddThh:mn | | {DateErected} | | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mn | n | {DateInspected} | | | | | | | | | | | | | | 1 | | | | | | | | | | | 1 | | | - | | | | | | | | 1 | | | Reinforcement and steel lintels required at openings | | | | | | | | | | | | | | | | | | | 1 | | | lope | | | | | | | | 1 | | | pacing | | | | | | | | 1 | | | Design Loads Deflection criteria | | | | | | | | | | | Baseline This work is licensed under the Creative Commons | | | | Part 1 - A | Attribute Description | Part 2 | Project-Specific | Milestones | (Examples) | |--|-----------|------------------|------------------|-------------------------|--------------------------|---------|------------------|------------|------------| | Additional Attribution-NonCommercial 4.0 International | | | | | | Estimat | ing Estimating | LEED Cert. | LEED Cert | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | Est. 1 | | Check | Submittal | | Grating Type | | • | | | • | | J | | | | Material | | | | Steel, Alum, Fiberglass | | | | | | | inish | | | | Painted, Galvanized, | | | | | | | | | | | Anodized | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | | | | | | | | | | Shop Submittal Parameters | | | | | | | | | | | Date - Issued For Construction | | | yyyy-mm-ddThh:mn | | {DateIFC} | | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | 1 | {DatePermitted} | | | | | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | n | {DateReceivedForShopDet} | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | n | {DateOutForApproval} | | | | | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | n | {DateFinalForFab} | | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | n | {DateFabStart} | | | | | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | n | {DateFabEnd} | | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | n | {DateFabShip} | | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | n | {DateFabReceived} | | | | | | Date - Erection | | | yyyy-mm-ddThh:mn | | {DateErected} | | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mn | yyyy-mm-ddThh:mn | 1 | {DateInspected} | einforcement and steel lintels required at openings | lope | | | | | | | | | | | pacing | | | | | | | | | | | Design Loads | | | | | | | | | | | Deflection criteria | | | | | | | | | | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | |---|----------------|-----------------------|---|---|---|------------|-----------------------------|-------------|-------------| | B – Ext. Wall | | | | | | | | | | | | | | | aut 1 Attuibuta Dasau | | Doub 2 Due | in at Conneilin | NA:Lastanas | (Francisco) | | Additional Additional Attribution-NonCommercial 4.0 International | | | ۲ | art 1 - Attribute Descri | ption | | ject-Specific
Estimating | | | | Liconco | Data Toma | I to the laws | I I alba a Balanda | Oution Francisco | C | | | | | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | Construction | Text | | | framed, unit masonry, panelized, EIFS, etc. | | | | | | | Material - Skin | Text | | | tiles, composite, sheet metal, etc. | | | | | | | Material - Substrate | Text | | | corrugated metal, plywood, composite panels, etc. | | | | | | | Material - Insulation | Text | | | | | | | | | | Wall Type | Text | | | | | | | | | | Thermal Resistance | Number | h·ft2·°F/Btu (R) | m ^{2o} C/W (R) | | | | | | | | Thermal Transmittance | Number | Btu/(h·ft2·°F/Btu (U) | W/(m ²⁰ C) (U) | | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | + | | Wind Load Capacity (drag) | Number | psf | Pa | 100, 200, 000, 000, 100 | | | | | + | | Wind Load Capacity (drag) Wind Load Capacity (pressure) | Number | psf | Pa | | | | | | | | Fire Rating | Text | ps. | | options: [UL label - | | | | | | | | - . | | | A,B,C,D,E,S] | | | | | | | Impact resistance | Text | | | options:[T/F, class] | | | | | | | UV Resistance | Text | | | options:[T/F, class] | | | | | | | Air Infiltration | Text | | | options:[T/F, class] | | | | | | | Sound Transmission | - . | | | | | | | | | | Acoustic Rating | Text | | | | | | | | | | Security Rating | Text | 2 | 2 | | | | | | | | Glazing Area | Number | ft ² | m ² | | Fraction of the glazing area relative to the total area of the filling element. | | | | | | Combustible | Logical | | | T/F, 1/0 | Indicates whether the object is made from combustible material. | | | | | | SurfaceSpreadofFlame | Text | | | | | | | | | | IsExternal | Logical | | | T/F, 1/0 | Should be set to TRUE for all external walls. | | | | | | Shop Submittal Parameters: | | | | | 8 | | | | | | Date - Issued For Construction | Datetime | yyyy-mm-ddThh:mm | vvvv-mm-ddThh:mm | | {DateIFC} | | | | 1 | | Date - Permitted | Datetime | yyyy-mm-ddThh:mm | | | {DatePermitted} | | | | 1 | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mm | | | {DateReceivedForShopDet} | | | | 1 | | Date - Detailing Submitted for EOR review \ Out For Approve | Datetime | yyyy-mm-ddThh:mm | | | {DateOutForApproval} | | | 1 | 1 | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mm | | 1 | {DateFinalForFab} | | | | 1 | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mm | * | | {DateFabStart} | | | 1 | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mm | | | {DateFabEnd} | | | 1 | 1 | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mm | | | {DateFabShip} | | | 1 | + | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mm | | | {DateFabReceived} | | | 1 | + | | Date - Frection | Datetime | yyyy-mm-ddThh:mm | | | {DateErected} | | | | 1 | | Date - Inspected | Datetime | yyyy-mm-ddThh:mm | | 1 | {DateInspected} | | | 1 | 1 | | Date - Inspected | Datelline | ,,,,, au | 7777 mm dummillim | | [Batemspected] | | 1 | | | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | |--|-----------|------------------|--------------------|---|--------------------------|----------------------|--------|-----------------------------|-------|-----------| | B – Roof | | | | | | | | | | | | Baseline Additional Attribution-NonCommercial 4.0 International | | | Pa | rt 1 - Attribute Descrip | otion | | | ject-Specific
Estimating | | | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | IFC Property | Est. 1 | Bid Pkg. | Check | Submittal | | Material - Skin | Text | · | | tiles, composite, sheet metal, etc. | · | . , | | | | | | Material - Substrate | Text | | | corrugated metal, plywood, composite panels, etc. | | | | | | | | Material - Insulation | Text | | | Batt, rigid, etc. | | | | | | | | Thermal Resistance | Number | | | R-value | | | | | | | | Thermal Transmittance | Numeric | | | U-value | | ThermalTransmittance | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | Current LOD |
Text | | | 100, 200, 300, 350, 400 | | | | | | | | Wind Load Capacity (drag) | Number | psf | Pa | | | | | | | | | Wind Load Capacity (pressure) | Number | psf | Pa | | | | | | | | | UV Resistance | Logical | | | T/F, 1/0 | | | | | | | | Acoustic Rating | Text | | | | | AcousticRating | | | | | | Fire Rating | Text | | | options: [UL label -
A,B,C,D,E,S] | | FireRating | | | | | | Shop Submittal Parameters: | | | | | <u>{</u> } | | | | | | | Date - Issued For Construction | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | n | {DateIFC} | | | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mn | nyyyy-mm-ddThh:mm | ı | {DatePermitted} | | | | | | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | ı | {DateReceivedForShopDet} | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | ı | {DateOutForApproval} | | | | | | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | ı | {DateFinalForFab} | | | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | ı | {DateFabStart} | | | | | | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | n | {DateFabEnd} | | | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | 1 | {DateFabShip} | | | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | ı | {DateFabReceived} | | | | | | | Date - Erection | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | ı | {DateErected} | | | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mn | n yyyy-mm-ddThh:mm | n | {DateInspected} | | | | | | | B – Ext. Glazed Openings | | | | | | | | | | | |--|--------------|--------------|----------------|--|--|---------------------------|--------------|-----------------|------------|------------------| | Baseline This work is licensed under the Creative Common | <u>S</u> | | | Part 1 - Attribute Descripti | on | | Part 2 - Pro | ject-Specific I | Milestones | (Examples) | | Additional Additional License | | | | | | | Estimating | Estimating | LEED Cert. | LEED Cert | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | IFC Property | Est. 1 | Bid Pkg. | Check | Submittal | | onstruction | Text | | | options:[Unitized (combined glass and | | | | | | | | | | | | frame), Stick Built, Structural Glass] | | | | | | | | Material | Text | | | options:[Aluminium Framed, Bronze | | | | | | | | | | | | Framed, Stainless Steel Framed, Channel Glass] | | | | | | | | hermal Resistance | Number | | | R-value | | | | | | | | hermal Transmittance | Number | | | U-value | | ThermalTransmittance | | | | | | arget LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | urrent LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | /lanufacturer | Text | | | | | | | | | | | Model Designation | Text | | | | | | | | | | | ocation | Text | | | | | | | | | | | peration | Text | | | | | OperationType | | | | | | | | | | fixed, casement, double/single hung, | | | | | | | | N | | | | awning/project out, pivot, sliding | | | | | | | | Glass - Material | Text | | | options:[Glass, Plastic] | | | | | | | | ilass - Configuration | Text | | | options:[Monolithic, Insulating] options, multiple:[Annealed, Heat | | | | | | | | lass - Condition | Text | | | Strengthened, Tempered, Laminated, Bent | | | | | | | | | | | | on engineera, rempercu, turimuteu, berit | | | | | | | | ilass - Coatings | Text | | | options, multiple:[Purolytic (hard coat), | | | | | | | | · · | | | | Sputter (soft coat), Low E, Metallic, Cerami | | | | | | | | | | | | Frit, Opaci Coat, Digital Printed] | | | | | | | | | | | - | | | | | | | | | Vindbourne Debris Resistance | Number | psf
psf | Pa | | | | | | | | | Vind Load Capacity | Number | psr | Pa | antionalisas na alosal | | Infiltration | | | | | | ir Infiltration ound Transmission | Text
Text | | | options:[yes, no, class] options:[yes, no, class] | | Intiltration | | | | | | coustic Rating | Text | | | options.[yes, no, class] | | AcousticRating | | | | | | ecurity Rating | Text | | | | | SecurityRating | | | | | | Glazing Area | Number | | | | Fraction of the glazing area relative to the total area of the filling e | | | | | | | landicap Accessible | Logical | | | | | HandicapAccessible | | | | | | ire Exit | Logical | | | | | FireExit | | | | | | lasDrive | Logical | | | | Indicates whether the door has an automatic drive to operate it. | HasDrive | | | | | | | | | | | | | | | | | | SelfClosing | Logical | | | | | SelfClosing | | | | | | mokeStop | Logical | | | | Indicates whether the door is designed to provide a smoke stop. | SmokeStop | | | | | | THE A | 1- 1 | | | | | UCilifornia I | | | | | | Sillexternal | Logical | | | | | HasSillExternal | - | | | | | illinternal GLAZING ATTRIBUTES: | Logical | | | | | HasSillInternal | | | | | | lassLayers | Number | | | | Number of glass layers within the frame | GlassLayers | | | | | | ilassThickness1 | Number | in | mm | | Inner glass layer | GlassThickness1 | | | | | | GlassThickness2 | Number | in | mm | | Intermediate or outer glass layer | GlassThickness2 | 1 | | | | | GlassThickness3 | Number | in | mm | | Outer glass layer | GlassThickness3 | 1 | | | | | illGas | Text | | | | Name of the gas in gap between glass layers | FillGas | | | | | | ilassColor | Text | | | | | GlassColor | | | | | | Tempered | Logical | | | | | IsTempered | | | - | | | Laminated | Logical | | | | | IsLaminated | | | | | | Coated | Logical | | | | | IsCoated | | | | | | Wired | Logical | | | | | IsWired | | | | | | isibleLightReflectance | Number | | | | | VisibleLightReflectance | | | | | | (isibleLightTransmittance | Number | | | | | VisibleLightTransmittance | | | | | | olarAbsorption | Number | | | | (Asol) The ratio of incident solar radiation that is absorbed by a | SolarAbsorption | | | | | | SolarReflectance | Number | | | | glazing system (Rsol) The ratio of incident solar radiation that is reflected by a | SolarPofloctance | | | | | | oral netrectative | number | | | | glazing system | SolarReflectance | | | | | | SolarTransmittance | Number | | | | (Tsol) The ratio of incident solar radiation that directly passes | SolarTransmittance | | | | | | S.G Grisinitanic | | | | | through a glazing system | Solar Hallottille | 1 | | | | | SolarHeatGainTransmittance | Number | | | (SHGC) The ratio of incident solar radiation that contributes to th | e SolarHeatGainTransmittance | | | |---|----------|------------------|------------------|---|------------------------------|--|--| | | | | | heat gain of the interior | | | | | ShadingCoefficient | | | | SC is being phased out in favor of SHGC | ShadingCoefficient | | | | | | | | | | | | | Shop Submittal Parameters: | | | | {} | | | | | Date - Issued For Construction | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateIFC} | | | | | Date - Permitted | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DatePermitted} | | | | | Date - received for Shop Detailing | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateReceivedForShopDet} | | | | | Date - Detailing Submitted for EOR review \ Out For Approve | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateOutForApproval} | | | | | Date - Final Erection Drawings Approved for Fab | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateFinalForFab} | | | | | Date - Fabrication Start | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateFabStart} | | | | | Date - Fabrication End | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateFabEnd} | | | | | Date - Fabrication Shipped | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateFabShip} | | | | | Date - Fabrication Received | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateFabReceived} | | | | | Date - Erection | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateErected} | | | | | Date - Inspected | Datetime | yyyy-mm-ddThh:mm | yyyy-mm-ddThh:mm | {DateInspected} | | | | | aseline This work is licensed under the Creative Commons | | | Pa | 1 - Attribute Description | Part 2 - Pr | oject-Specific | Milestones | (Examples) | | |--|-----------|------------------|---|---------------------------|-------------|----------------|------------|------------|----------| | dditional Attribution-NonCommercial 4.0 International | | | | | | Estimating | | | | | T I CONCO | Data Type | Units - Imp. | Units - Metric Option Exam | les Commentary | Est. 1 | Bid Pkg. | | Submittal | | | onstruction | Text | Omes impi | options:[Unitized | Commentary | 250. 1 | Did i kg. | CHECK | Sasimetai | + | | onstruction | TEXT | | (combined glass and
Stick Built, Structure | | | | | | | | faterial | Text | | options:[Aluminium
Framed, Bronze Fra
Stainless Steel Fram
Channel Glass] | | | | | | | | oatings | Text | | options, multiple:[P
(hard coat), Sputter
coat), Low E, Metall
Ceramic Frit, Opaci
Digital Printed] | oft | | | | | | | arget LOD | Text | | 100, 200, 300, 350, | 00 | | | | | 1 | | urrent LOD | Text | | 100, 200, 300, 350, | 00 | | | | | | | | | | | | | | | | | | /ind Load Capacity (pressure) | Number | psf | Pa | | | | | | <u> </u> | | /ind Load Capacity (drag) | Number | psf | Pa | | | | | | ┷ | | /indbourne Debris Resistance | | | options:[yes, no, cla | | | | | | 4 | | hermal Resistance | | | R-value (h·ft2·°F/Bt | | | | | | + | | hop Submittal Parameters | | | | 8 | | | | | + |
Date - Issued For Construction	Datetime	vvvv-mm-ddThh:mm	yyyy-mm-ddThh:mm	{DateIFC}					1		Date - Permitted			yyyy-mm-ddThh:mm	{DatePermitted}					1		Date - received for Shop Detailing			yyyy-mm-ddThh:mm	{DateReceivedForShopDet}					1		Date - Detailing Submitted for EOR review \ Out For Approv			yyyy-mm-ddThh:mm	{DateOutForApproval}					T		Date - Final Erection Drawings Approved for Fab			yyyy-mm-ddThh:mm	{DateFinalForFab}							Date - Fabrication Start	Datetime	yyyy-mm-ddThh:mn	yyyy-mm-ddThh:mm	{DateFabStart}							Date - Fabrication End	Datetime	yyyy-mm-ddThh:mn	yyyy-mm-ddThh:mm	{DateFabEnd}							Date - Fabrication Shipped	Datetime	yyyy-mm-ddThh:mn	yyyy-mm-ddThh:mm	{DateFabShip}							Date - Fabrication Received			yyyy-mm-ddThh:mm	{DateFabReceived}							Date - Erection	Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm	{DateErected}							Date - Inspected	Datetime	yyyy-mm-ddThh:mn	yyyy-mm-ddThh:mm	{DateInspected}							ondensation Resistance			options:[yes, no, cla								/ater Resistance			options:[yes, no, cla								ir Infiltration			options:[yes, no, cla								ound Transmission			options:[yes, no, cla	-							ullet Resistance			options:[yes, no, cla						1		adiation Protection			options:[yes, no, cla]					┸		ire Rating			options: [UL label - A,B,C,D,E,S]																	┸									1		1		B – Ext. Doors												--	------------------	------------------	--	--	--	--	--------------	---------------	------------	------------		This work is licensed under the Creative Commons				Part 1 - Attribute	Description		Part 2 - Pro	ject-Specific	Milestones	(Examples)		dditional Attribution-NonCommercial 4.0 International								Estimating				ttribute	Data Type	Units - Imp.	Units - Metric	Option Examples	Commentary	IFC Property	Est. 1	Bid Pkg.	Check	Submittal		pe	Text			single, double, sliding, etc.	•	Reference																		peration	Text			LH, LHR, RH, RHR		OperationType						aterial - Frame	Text			wood, metal, glass, etc.								laterial - Panel	Text			solid core / hollow core, wood/metal, etc.								laterial - Glazing	Text			wood/metal, etc.								ardware Set	Text			reference to schedule								re Rating	Text			options: [UL label -		FireRating										A,B,C,D,E,S]								arget LOD	Text			100, 200, 300, 350, 400			1					irrent LOD	Text Text			100, 200, 300, 350, 400			+					lanufacturer	Text		+									lodel Designation ocation	Text		+				+					nish - Frame	Text		+				1					nish - Panel	Text		+									riish - Pahei Yind Load Capacity	Number	psf	Pa				 					coustic Rating	Text	pai	1 4			AcousticRating						ecurity Rating	Text		+			SecurityRating	1					lazing Area	Number				Fraction of the glazing area relative to the total area of the filling element	<u> </u>						andicap Accessible	Logical					HandicapAccessible						re Exit	Logical					FireExit	1					asDrive	Logical				Indicates whether the door has an automatic drive to operate it.	HasDrive						elfClosing	Logical					SelfClosing						mokeStop	Logical				Indicates whether the door is designed to provide a smoke stop.	SmokeStop						LAZING ATTRIBUTES:						-						lassLayers	Number				Number of glass layers within the frame	GlassLayers						lassThickness1	Length	in	mm		Inner glass layer	GlassThickness1						lassThickness2	Length	in	mm		Intermediate or outer glass layer	GlassThickness2						lassThickness3	Length	in	mm		Outer glass layer	GlassThickness3						illGas	Text				Name of the gas in gap between glass layers	FillGas						lassColor	Text					GlassColor						Tempered	Logical					IsTempered						Laminated	Logical					IsLaminated						Coated	Logical		1			IsCoated	1					Wired	Logical					IsWired						isibleLightReflectance	Number					VisibleLightReflectance	-					isibleLightTransmittance olarAbsorption	Number Number				(Asol) The ratio of incident solar radiation that is absorbed by a glazing system	VisibleLightTransmittance SolarAbsorption						olarReflectance	Number				(Rsol) The ratio of incident solar radiation that is reflected by a glazing system	SolarReflectance						olarTransmittance	Number				(Tsol) The ratio of incident solar radiation that directly passes through a glazing system	SolarTransmittance						olar Heat Gain Transmittance	Number				(SHGC) The ratio of incident solar radiation that contributes to the heat gain of the interior	SolarHeatGainTransmittanc	e					nadingCoefficient					SC is being phased out in favor of SHGC	ShadingCoefficient						nop Submittal Parameters:					{}							Date - Issued For Construction	Datetime	yyyy-mm-ddThh:mr	myyyy-mm-ddThh:mm	<u></u>	{DateIFC}							Date - Permitted	Datetime	yyyy-mm-ddThh:mr	myyyy-mm-ddThh:mm	<u></u>	{DatePermitted}							Date - received for Shop Detailing	Datetime		myyyy-mm-ddThh:mm		{DateReceivedForShopDet}							Date - Detailing Submitted for EOR review \ Out For Approv	Datetime		myyyy-mm-ddThh:mm		{DateOutForApproval}							Date - Final Erection Drawings Approved for Fab	Datetime		myyyy-mm-ddThh:mm		{DateFinalForFab}							Date - Fabrication Start	Datetime		myyyy-mm-ddThh:mm		{DateFabStart}							Date - Fabrication End	Datetime		myyyy-mm-ddThh:mm myyyy-mm-ddThh:mm		{DateFabEnd}							Date - Fabrication Received	Datetime	yyyy-mm-ddThh:mm	{DateFabReceived}				-----------------------------	----------	------------------	-------------------	--	--		Date - Erection	Datetime	yyyy-mm-ddThh:mm	{DateErected}				Date - Inspected	Datetime	yyyy-mm-ddThh:mm	{DateInspected}				Baceline This work is licensed under the Creative Commons				Doub 4 4	Attribute Description		Dort 2 Due	iost Crosifis	Milostansa	(Evanonia-)		--	-----------	------------------	-------------------	--------------------------	--------------------------	--------------	------------	---------------	------------	-------------			·			Part 1 - F	Attribute Description			ject-Specific				Auditional		T	1					Estimating				Attribute	Data Type	Units - Imp.	Units - Metric		Commentary	IFC Property	Est. 1	Bid Pkg.	Check	Submitta		Material	Text			options:[Aluminium												Framed, Bronze Framed,												Stainless Steel Framed,												Channel Glass]								Гуре	Text			Intake, Exhaust								Target LOD	Text			100, 200, 300, 350, 400								Current LOD	Text			100, 200, 300, 350, 400								Manufacturer	Text											Model Designation	Text											ocation	Text											Net Free Area	Number	sf	sqm									Nindbourne Debris Resistance	Number	psf	Pa									Nind Load Capacity	Number	psf	Pa									Adjustable	Logical											Air Flow	Text	cfm		options:[yes, no, class]								Forced Entry Resistance	Text			options:[yes, no, class]								Storm Proof	Logical																					1		Shop Submittal Parameters:	.				() (0 + 150)							Date - Issued For Construction			nyyyy-mm-ddThh:mm		{DateIFC}							Date - Permitted			nyyyy-mm-ddThh:mm		{DatePermitted}							Date - received for Shop Detailing			nyyyy-mm-ddThh:mm		{DateReceivedForShopDet}							Date - Detailing Submitted for EOR review \ Out For Approv			nyyyy-mm-ddThh:mm		{DateOutForApproval}							Date - Final Erection Drawings Approved for Fab			nyyyy-mm-ddThh:mm		{DateFinalForFab}							Date - Fabrication Start			nyyyy-mm-ddThh:mm		{DateFabStart}					-		Date - Fabrication End			nyyyy-mm-ddThh:mm		{DateFabEnd}							Date - Fabrication Shipped			nyyyy-mm-ddThh:mm		{DateFabShip}					1		Date - Fabrication Received			nyyyy-mm-ddThh:mm		{DateFabReceived}							Date - Erection			nyyyy-mm-ddThh:mm		{DateErected}							Date - Inspected	Datetime	yyyy-mm-ddThh:mn	nyyyy-mm-ddThh:mm		{DateInspected}																																																																																																																																												1												ļ																								ļ																																																																																																																																																										
																					Baseline This work is licensed under the Creative Commons				Part 1 - A	Attribute Description		Part 2 - Pro	ject-Specific	Milestones	(Examples)		--	-----------	------------------	--------------------------------------	---	-------------------------------	------------	--------------	---------------	------------	-------------		Additional Attribution-NonCommercial 4.0 International					•			Estimating				Attribute	Data Type	Units - Imp.	Units - Metric	Option Examples		Commentary	Est. 1	Bid Pkg.	Check	Submittal		Construction	Text	Omes impi		options:[Unitized		Commentary	250. 1	Did i kg.	CHECK	Subillittai		onstruction	Text			(combined glass and												frame), Stick Built,												Structural Glass]								1aterial	Text		· ·	options:[Aluminium											F	Framed, Bronze Framed,												Stainless Steel Framed,											(Channel Glass]								nermal Resistance	Number	R-Value										arget LOD	Text			100, 200, 300, 350, 400								urrent LOD	Text		-	100, 200, 300, 350, 400								un attia n			4	fived escement								unction				fixed, casement, double/single hung,												awning/project out, pivot,												sliding								Vind Load Capacity				psf								ilazing Method				options:[Conventional, Two											9	Sided, Three Sided, Four											5	Sided, Pint Supported]								ilass - Material				options:[Glass, Plastic]								ilass - Configuration				options:[Monolithic,											I	Insulating]								hop Submittal Parameters					{}							Date - Issued For Construction			yyyy-mm-ddThh:mm		{DateIFC}							Date - Permitted			yyyy-mm-ddThh:mm		{DatePermitted}							Date - received for Shop Detailing			yyyy-mm-ddThh:mm		{DateReceivedForShopDet}							Date - Detailing Submitted for EOR review \ Out For Approv			yyyy-mm-ddThh:mm		{DateOutForApproval}							Date - Final Erection Drawings Approved for Fab			yyyy-mm-ddThh:mm		{DateFinalForFab}							Date - Fabrication Start			yyyy-mm-ddThh:mm yyyy-mm-ddThh:mm		{DateFabStart}							Date - Fabrication End			yyyy-mm-ddThh:mm		{DateFabEnd} {DateFabShip}							Date - Fabrication Shipped Date - Fabrication Received			yyyy-mm-ddThh:mm		{DateFabReceived}							Date - Fabrication Received Date - Erection			yyyy-mm-ddThh:mm		{DateErected}							Date - Inspected			yyyy-mm-ddThh:mm		{DateInspected}							lass - Condition	Datetime	yyyy mmi aammini		options,	[Butchispected]							aus condition				multiple:[Annealed, Heat												Strengthened, Tempered,												Laminated, Bent]								ass - Coatings				options, multiple:[Purolytic								-				(hard coat), Sputter (soft												coat), Low E, Metallic,												Ceramic Frit, Opaci Coat,												Digital Printed]						1		Glass - Use	options, multiple:[Glazing			---	-----------------------------	-----			into conventional				application, Glazing into				structurally glazed				application, Mirror,				Decorative, Fire Resistant,				Hurricane Resistant, Cable				Suspended, Switchable				Glass, Electronically				Controlled switchable				Glass, Pressure Resistant,				Radiation Resistant,				Security, Ballistics				Resistant]															Visible Light Transmission	options:[yes, no, class]			Sound Transmission	options:[yes, no, class]			Forced Entry Resistance	options:[yes, no, class]			Bullet Resistance	options:[yes, no, class]			Radio Frequency Interference Protection	options:[yes, no, class]			Radiation Protection	options:[yes, no, class]			Finishes				Blast Resistance																								Manufacturer				Model Designation				Location				L		1 1		BIMForum LOD Specification 2020 Part II	_												--	-----------	--------------------------------------	----------------	---	---	------------	--------------	---------------	------------	--	---		C - Int. Doors	•												Baseline This work is licensed under the Creative Commons				Part 1 - A	Attribute Description		Part 2 - Dro	ject-Specific	Milestones	(Evamples)			Additional Attribution-NonCommercial 4.0 International				rait 1 - A	ittribute Description		Estimating	1					Attribute	Data Type	Units - Imp.	Units - Metric	Option Examples		Commentary	Est. 1	Bid Pkg.		Submittal			Туре	Text	Omts - mp.		single, double, sliding, etc.		Commentary	LSt. 1	Did Fig.	CHECK	Subillittal			Турс	Text			single, double, shamp, etc.									Material - frame	Text			wood, metal, glass, etc.									Material - panel	Text			solid core / hollow core,													wood/metal, etc.									Hardware set	Text			reference to schedule									Fire Rating	Text			options: [UL label -									Target LOD	Text			A,B,C,D,E,S] 100, 200, 300, 350, 400									Current LOD	Text			100, 200, 300, 350, 400									Current LOD	TEXE			100, 200, 300, 330, 400									Level				options:[First Floor, Second									2010				Floor, etc.]									Sill Height				options:[dimension: 0, 1'-													0", etc.]																	1					Shop Submittal Parameters					{}								Date - Issued For Construction		yyyy-mm-ddThh:mm			{DateIFC}								Date - Permitted		yyyy-mm-ddThh:mm			{DatePermitted}								Date - received for Shop Detailing		yyyy-mm-ddThh:mm			{DateReceivedForShopDet}								Date - Detailing Submitted for EOR review \ Out For Approved Date - Final Erection Drawings Approved for Fab		yyyy-mm-ddThh:mm yyyy-mm-ddThh:mm			{DateOutForApproval} {DateFinalForFab}								Date - Fabrication Start		yyyy-mm-ddThh:mm			{DateFabStart}								Date - Fabrication Start Date - Fabrication End		yyyy-mm-ddThh:mm			{DateFabEnd}								Date - Fabrication Shipped		yyyy-mm-ddThh:mm			{DateFabShip}								Date - Fabrication Received		yyyy-mm-ddThh:mm			{DateFabReceived}								Date - Erection		yyyy-mm-ddThh:mm			{DateErected}								Date - Inspected		yyyy-mm-ddThh:mm			{DateInspected}								Frame Setback				options:[dimension: 1", 2",													etc]									Frame Type				options:[reference to													schedule]									Glazing Type				options:[reference to schedule]									Jamb Detail				options:[reference to									Janib Detail				schedule]									Head Detail				options:[reference to													schedule]									Comments				options:[reference to													schedule]									Mark				options:[reference to													schedule]									Phase Created				options:[Existing, New Construction, Phase 1,													Phase 2, etc.]									Head Height				options:[dimension: 7'-0",				1					· 				etc.]									Undercut				options:[yes, no]									Function				options:[Interior, Exterior]																						Panel Thickness				options:[1 3/4", 2", etc.]									Rought Width				options:[3'-4", 3'-10", etc.]									Pought Height				options:[7'-2", etc.]				1					Rought Height				ομιιοτιδ.[7 -2 , etc.]									Manufacturer								1		 			Model Designation													Location								+		 			-ocation	<u> </u>				<u> </u>				<u> </u>		l		BIMForum LOD Specification 2020 Part II	-									1				---	--------------	------------------	--------------------------------------	--	-------------------------------	---	---------------	------------	------------	---	--	--		C - Partitions Baseline This work is licensed under the Creative Commons				Dart 1 /	Attribute Description	Dart 2 Dro	iost Specific	Milostonos	(Evamples)					Additional Attribution-NonCommercial 4.0 International				rait I - A	tttibute bescription	Part 2 - Project-Specific Milestones (Examples) Estimating Estimating LEED Cert. LEED Cert								Attribute	Data Type	Units - Imp.	Units - Metric	Option Examples	Commentary	Est. 1	Bid Pkg.	Check	Submittal					raming	Text			3-5/8" Metal Studs @																																																																								
			24"oc, etc										Cladding	Text			2-layers Type x GWB										Noisture Resistance	Logical			T/F, 1/0 2-hr, etc.										Fire Rating Farget LOD	Text Text			100, 200, 300, 350, 400										current LOD	Text			100, 200, 300, 350, 400										Wall Type														Base Constraint				options:[First Floor, Second Floor, etc.]										ase Offset			(options:[dimension: 6", 1'- 4", etc.]										Top Constraint			(options:[First Floor, Second Floor, etc.]										Shop Submittal Parameters					0					1				Date - Issued For Construction	Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm		{DateIFC}					1				Date - Permitted	Datetime		yyyy-mm-ddThh:mm		{DatePermitted}	1				1				Date - received for Shop Detailing	Datetime		yyyy-mm-ddThh:mm		{DateReceivedForShopDet}									Date - Detailing Submitted for EOR review \ Out For Approv	, Datetime		yyyy-mm-ddThh:mm		{DateOutForApproval}									Date - Final Erection Drawings Approved for Fab	Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm		{DateFinalForFab}									Date - Fabrication Start	Datetime		yyyy-mm-ddThh:mm		{DateFabStart}									Date - Fabrication End	Datetime		yyyy-mm-ddThh:mm		{DateFabEnd}									Date - Fabrication Shipped	Datetime		yyyy-mm-ddThh:mm		{DateFabShip}									Date - Fabrication Received	Datetime		yyyy-mm-ddThh:mm		{DateFabReceived}									Date - Erection	Datetime		yyyy-mm-ddThh:mm yyyy-mm-ddThh:mm		{DateErected} {DateInspected}									Date - Inspected Top Offset	Datetime	yyyy-mm-aa mm.mm	(options:[dimension: 6", 1'-	{Datemspected}									Structural				4", etc.] options:[yes, no]										Length				options:[dimension: 12'-0",										ecing til				23'-4", etc.]										Area			(options:[area: 110 sf, 1,300 sf, etc.]										Volume				options:[volume: 1,760 cf, 7,650 cf, etc.]										Vlark			(options:[reference to schedule]										Phase Created			(options:[Existing, New Construction, Phase 1,														Phase 2, etc.]										Structure Material				options:[Concrete, Masonry, Wood Stud,													1	Metal Stud, etc.]						L				Width				options:[dimension: 4 7/8", 7 1/4" 7 5/8", 1'-0" etc]										Function				options:[Interior, Exterior,		1												Foundation, Retaining, Soffit, Core-Shaft, etc.]										Model				options:[manufacturer specific information]										Manufacturer			(options:[manufacturer										JRL			(specific information] options:[manufacturer														specific information]		1	I			1				IMForum LOD Specification 2020 Part II											--	-----------	---------------------	------------------	--	----------------------------------	--------------	------------	------------	-----------		C - Raised Floor																				<i>-</i>		Saseline This work is licensed under the Creative Commons Additional Attribution-NonCommercial 4.0 International				Part 1 - <i>F</i>	Attribute Description	Part 2 - Pro					Additional						Estimating	Estimating	LEED Cert.			Attribute	Data Type	Units - Imp.	Units - Metric	Option Examples	Commentary	Est. 1	Bid Pkg.	Check	Submittal		Aodel .	Text			options:[manufacturer											specific information]							Manufacturer	Text			options:[manufacturer											specific information]							Grid	Text			12x12, etc.							leight	Number										arget LOD	Text			100, 200, 300, 350, 400							urrent LOD	Text			100, 200, 300, 350, 400																		Material Thickness	Text			options:[dimension: 1", 1							A-A-d-IT	Taret			1/4",etc.]					-		Naterial Types	Text			options:[Concrete, Steel,							aval				Aluminum] options:[First Floor, Second							evel				Floor, etc.]											11001, Ett.]							op Submittal Parameters					Λ						Date - Issued For Construction	Datetime	yyyy-mm-ddThh:mm	vvvv-mm-ddThh·mm		{DateIFC}						Date - Permitted		yyyy-mm-ddThh:mm			{DatePermitted}						Date - received for Shop Detailing		yyyy-mm-ddThh:mm			{DateReceivedForShopDet}						Date - Detailing Submitted for EOR review \ Out For Approv		yyyy-mm-ddThh:mm			{DateOutForApproval}						Date - Final Erection Drawings Approved for Fab		yyyy-mm-ddThh:mm			{DateFinalForFab}						Date - Filial Election Drawings Approved for Fab Date - Fabrication Start		yyyy-mm-ddThh:mm			{DateFinlan of ab}						Date - Fabrication Start Date - Fabrication End		yyyy-mm-ddThh:mm			{DateFabStarty}								yyyy-mm-ddThh:mm			{DateFabShip}						Date - Fabrication Shipped Date - Fabrication Received		yyyy-mm-ddThh:mm			{DateFabSinpy { DateFabReceived}						Date - Fabrication Received Date - Erection		yyyy-mm-ddThh:mm			{DateFrected}						Date - Erection Date - Inspected		yyyy-mm-ddThh:mm			{DateInspected}						leight Offset from Level	Datetime	yyyy-iiiii-aa iiiii		options:[dimension: 8", 1'-	[Datemspected]						eight Offset hom Level				0", etc]							oom Bounding				options:[yes, no]							tructural				options:[yes, no]							rea				options:[dimension: 100 sf,							Cu				1,235 sf, etc.]							Perimeter				options:[dimension: 42'-5",											125'-0", etc.]							omments				options:[reference to											schedule]							lark				options:[reference to											schedule]							nase Created				options:[Existing, New											Construction, Phase 1,											Phase 2, etc.]							eynote				options:[reference to											schedule]							L .				options:[manufacturer											specific information]							ssembly Code (Uniformat)				C1060							ssembly Description (Uniformat)				Raised Floor Construction																		ost				options:[cost = \$/sf]																		nase Demolished				options:[New Construction, Phase 1, Phase 2, etc.]							C - Susp. Clg.														--	-------------	------------------	------------------	---	--------------------------	------------	--------	---------	-------------	------------	------------	---------		Baseline This work is licensed under the Creative Commons				Part 1 - A	Attribute Description		Part 2	- Proie	ct-Specific	Milestones	(Examples)	t		Additional Attribution-NonCommercial 4.0 International									Estimating					Attribute	Data Type	Units - Imp.	Units - Metric	Option Examples		Commentary	Est		Bid Pkg.	Check	Submittal			Grid	Text	•		24x24, etc		•			J			1		Material	Text			,								T		Seismic Bracing	Logical											7		Target LOD	Text			100, 200, 300, 350, 400								Т		Current LOD	Text			100, 200, 300, 350, 400								T																Phase Created				options:[Existing, New								T						Construction, Phase 1,														Phase 2, etc.]								1		Material Thickness				options:[dimension: 3/4",														5/8", etc.]								+		Model				options:[manufacturer										No months about an				specific information] options:[manufacturer								+		Manufacturer				specific information]														specific information;								+		Shop Submittal Parameters					{}							Τ		Date - Issued For Construction	Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm		{DateIFC}									Date - Permitted	Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm		{DatePermitted}									Date - received for Shop Detailing	Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm		{DateReceivedForShopDet}							Ī		Date - Detailing Submitted for EOR review \ Out For Approx	/: Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm		{DateOutForApproval}							Т		Date - Final Erection Drawings Approved for Fab	Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm		{DateFinalForFab}									Date - Fabrication Start			yyyy-mm-ddThh:mm		{DateFabStart}									Date - Fabrication End			yyyy-mm-ddThh:mm		{DateFabEnd}									Date - Fabrication Shipped			yyyy-mm-ddThh:mm		{DateFabShip}									Date - Fabrication Received			yyyy-mm-ddThh:mm		{DateFabReceived}									Date - Erection			yyyy-mm-ddThh:mm		{DateErected}									Date - Inspected	Datetime	yyyy-mm-ddThh:mm	yyyy-mm-ddThh:mm		{DateInspected}									Ceiling Attenuation Class (CAC)				options:[33, 35, 40, etc.]							
4		Surface Burning Characteristics (SBC)				options:[ASTM E84, etc.]								+														\bot														4														\perp							-							+														+							-							+														+														+		Baseline			Part 1 - Attribute	Description	Dort 3	vample Drei	oct_Specific	Milestones		--------------------------------------	--------------	----------------------	-------------------------------------	---------------	------------	--------------	--------------	------------		Additional			Part 1 - Attribute	: Description	Part 2 - E	xample Proje	LEED Cort	I FED Cor		Attribute	Data Type I	Unite Imp Unite	Metric Option Examples	Commentary	Est. 1	Bid Pkg.	Chock	Submitta		Global Attributes	Data Type (onits - imp. onits -	Metric Option Examples	Confinentary	Est. 1	Blu Pkg.	CHECK	Subillitta		Target LOD	Text		100, 200, 300, 350, 400							Current LOD	Text		100, 200, 300, 350, 400					+		Item-Specific Attributes	. exe		200, 200, 000, 000, 100							Electrical										Riser Fuses for Separate Lighting	Number									Riser Fuses	Number									Nominal Line Current	Number									Max. RMS acc. Line Current, la	Number									Main Supply Voltage	Number	Volts								Main Fuses	Number							_		Lighting Fuses	Number	11-						+		Frequency Mechanical	Number	Hz								Pit Floor Load	Number									Lifting Hook Capacity	Number					+				Force z Cwt	Number							+		Force z Car	Number							+		Force y Cwt	Number									Force y Car	Number									Force x Cwt	Number									Force x Car	Number									Dimensions										Travel Distance	Number									shaft depth	Number									shaft width	Number									Overhead height	Number									Pit Depth	Number									Clear Width	Number									Clear Height	Number							-		Clear Depth	Number									Identity	Total									Manufacturer Croup ID	Text							=		Group ID	Text Text									Equipment ID Elevator	Text									Speed	text							_		Capacity	text							-		Machine Type	text							+		Cwt Orientation	text									Main Entrance Level	text							+		Total Floors Served	Number							-		Floors served front side	text									Number of Accesses front side	Number									Floors served back side	text									Number of Accesses back side	Number									Landing Door Clear Width front side	Number									Landing Door Clear Height front side	Number									Landing Door Clear Width back side	Number							-		Landing Door Clear Height back side	Number		4.1			1		-		Type of door front side	text		1-leaf										2-leaf telescopic 3-leaf telescopic										2-leaf central										4-leaf central										6-leaf central										Other									1					---------	---------------------------------------	------	---------------------------------------	----------------------------------	---			Type of door back side	text		1-leaf							2-leaf telescopic							3-leaf telescopic							2-leaf central							4-leaf central							6-leaf central							Other				Drive Principle	text		traction, hydraulic				Position of drive in shaft	text		left, right, other							lett, right, other				Drive position	text		in top of elevator shaft, in pit							of elevator shaft, on top of							elevator shaft elevator shaft				Buffer Type	text																																																																												1																																																																																																																																																																																																																																																						-																										+							\perp															· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·		_	**BIMForum LOD Specification 2020 Part II** D20 - Plumbing is work is licensed under the Creative Commor Part 1 - Attribute Description Part 3 - Example Project tribution-NonCommercial 4.0 International Additional **Estimating Estimating** Data Type Units - Imp. Units - Metric Option Examples Commentary **COBie Tag Attribute IFC Name** Est. 1 Bid Pkg. **Global Attributes** Component ID Text Part or Equipment Tag Condition Status Status of the element, predominately used in renovation or retrofitting projects New, Existing, Demolish, Temporary, User Defined Room Number Text Room number where component to be/is installed Room Name Text Room name where component to be/is installed Text tory Number Floor or level room is located Text The organization that manufactured and/or assembled the item. Manufacturer Name Product Name Text The manufacturers model name of the product model (or product line) Model Designation Text The manufacturers model number or designator of the product model (or product line) 100, 200, 300, 350, 400 arget LOD Text 100, 200, 300, 350, 400 Current LOD Text Component characteristics Properties of individual elements of manufactured products Acquisition Date Date Time Date The date that the manufactured item was purchased. ssembly Place Text Code defining where the assembly takes place Bar Code Text The identity of the bar code given to an occurrence of the product. Batch Reference Text The identity of the batch reference from which an occurrence of a product is taken. Production Year Number Year The year of production of the manufactured item. Serial Number Text The serial number assigned to an occurrence of a product. Design Performance Text Captures the period of time that an artifact will last. Service Life Mean Time Between Failure Number The average time duration between instances of failure of a product. Days Service Life Duration Number Year(s) The length or duration of a service life. Service Life Factors Text Captures various factors that impact the expected service life of elements within the system or zone. Text Design Level Adjustment of the service life resulting from the effect of design level employed. Text Adjustment of the service life resulting from the effect of the indoor environment (where appropriate). Indoor Environment n Use Conditions Text Adjustment of the service life resulting from the effect of the conditions in which components are operating. Maintenance Level Text Adjustment of the service life resulting from the effect of the level or degree of maintenance applied to components. Outdoor Environment Text Adjustment of the service life resulting from the effect of the outdoor environment (where appropriate) Quality Of Components Text Adjustment of the service life resulting from the effect of the quality of components used. Work Execution Level Text Adjustment of the service life resulting from the effect of the quality of work executed. Warranty A written guarantee, issued to the purchaser of an article by its manufacturer, promising to repair or replace it if necessary xclusions Text Items, conditions or actions that may be excluded from the warranty or that may cause the warranty to become void. s Extended Warranty True or False Indication of whether this is an extended warranty whose duration is greater than that normally assigned Logical Point Of Contact Text The organization that should be contacted for action under the terms of the warranty. Text Warranty Content The content of the warranty. Warranty End Date Date Time Date The date on which the warranty expires. Warranty Identifier Text The identifier assigned to a warranty. Warranty Period Number Year(s) The time duration during which a manufacturer or supplier guarantees or warrants the performance of an artefact. Date Time Warranty Start Date Date The date on which the warranty commences. Fixture-Specific Attributes **Bath Tub** Sanitary appliance for immersion of the human body or parts of it. IfcSanitaryTerminal Bath Type Domestic, Domestic Corner, The property enumeration defines the types of bath that may be specified within the property set. Text Foot, Jacuzzi, Plunge, Sitz, Treatment, Whirlpool, User Defined Color Text White, Almond, User Defined Principal color of the object. Number Inch The size of the drain outlet connection from the object. Drain Size Has Grab Handles Logical Indicates whether the bath is fitted with handles that provide assistance to a bather in entering or leaving the bath. Nominal Depth Inch Nominal or quoted depth of the object. Number mm Nominal Length Number Inch Nominal or quoted length of the object. mm Nominal Width Number Inch Nominal or quoted width of the object. mm Waste water appliance for washing the excretory organs while sitting astride the bowl IfcSanitaryTerminal Bidet Bidet Type Text The property enumeration defines the types of bidet that may be specified within the property set.		Color	Text			White, Almond, User Defined Color																																																																																																																																																																																																																																																																																																																																																																																																																																																											
selection for this object.		-----	---------------------------------	------------------	--------------	--------	--			Drain Size	Number	Inch	mm	The size of the drain outlet connection from the object.			Mounting	Text	-		BackToWall, Pedestal, Wall Hung The property defines sanitary terminals mounting type			Nominal Depth	Number	Inch	mm	Nominal or quoted depth of the object.			Nominal Length	Number	Inch	mm	Nominal or quoted length of the object.			Nominal Width	Number	Inch	mm	Nominal or quoted width of the object.			Spillover Level	Number	Inch	mm	The level at which water spills out of the object.		Cul	vert				Covered channel or large pipe that forms a watercourse below ground level, usually under a road or railway. IfcPipeSegment			Culvert Type	Text			The property enumeration defines the types of culvert that may be specified within the property set.			Clear Depth	Number	Inch	mm	The clear depth of the culvert.			Internal Width	Number	Inch	mm	The internal width of the culvert.			nking Fountain				A sanitary terminal that provides a low pressure jet of water for a specific purpose. IfcSanitaryTerminal			Fountain Type	Text			Drinking Water, Eyewash, User Defined User Defined			Color	Text			White, Almond, Stainless, User Defined			Drain Size	Number	Inch	mm	The size of the drain outlet connection from the object.			Mounting	Text			BackToWall, Pedestal, Selection of the form of mounting of the fountain							Countertop, WallHung, User			Newsinal Doubh	Ni. me le e e	la el-		Defined New including a supposed death of the chiest			Nominal Depth	Number	Inch Inch	mm	Nominal or quoted depth of the object. Nominal or quoted length of the object.			Nominal Length Nominal Width	Number Number	Inch	mm	Nominal or quoted length of the object. Nominal or quoted width of the object.			or Drain	Number	IIICII	111111	Pipe fitting, set into the floor, that collects waste water and discharges it to a separate trap. IfcWasteTerminal			Drain Type	Text			Identifies the predefined types of drain from which the type required may be set.			Cover Length	Number	Inch	mm	The length measured along the x-axis in the local coordinate system or the radius (in the case of a circular shape in plan) of			cover zengan	Number	men	******	the cover			Cover Width	Number	Inch	mm	The length measured along the y-axis in the local coordinate system of the cover of the waste.			Nominal Body Depth	Number	Inch	mm	Nominal or quoted length measured along the z-axis in the local coordinate system of the waste.			Nominal Body Length	Number	Inch	mm	Nominal or quoted length measured along the x-axis in the local coordinate system or the radius (in the case of a circular							shape in plan) of the waste.			Nominal Body Width	Number	Inch	mm	Nominal or quoted length measured along the y-axis in the local coordinate system of the waste.			Outlet Connection Size	Number	Inch	mm	Size of the outlet connection from the object.		Flo	or Sink				Pipe fitting or assembly of fittings to receive surface water or waste water, fitted with a grating or sealed cover. IfcWasteTerminal			Sink Type	Text			Identifies the predefined types of sink from which the type required may be set.			Back Inlet Pattern Type	Text			0,1,2,3 or 4: inlet connections Identifies the pattern of inlet connections to a trap							and arrangement may vary.							The outlet is either vertical or							is placed at the bottom							(south side) of the trap (when viewed in plan).							Position 1 is to the left							(west), position 2 is to the							top (north), position 3 is to							the right (east) and position 4							is to the bottom (south).										Cover Length	Number	Inch	mm	The length measured along the x-axis in the local coordinate system or the radius (in the case of a circular shape in plan) of							the cover of the trap.			Cover Width	Number	Inch	mm	The length measured along the y-axis in the local coordinate system of the cover of the trap.			Inlet Connection Size	Number	Inch	mm	Size of the inlet connection(s)			Nominal Sump Depth	Number	Inch	mm	Nominal or quoted length measured along the z-axis in the local coordinate system of the sump.			Nominal Sump Length	Number	Inch	mm	Nominal or quoted length measured along the x-axis in the local coordinate system or the radius (in the case of a circular shape in plan) of the sump.			Nominal Sump Width	Number	Inch	mm	Nominal or quoted length measured along the y-axis in the local coordinate system of the sump.			Outlet Connection Size	Number	Inch	mm	Size of the outlet connection from the object.		Flo	or Trap				Pipe fitting or assembly of fittings to receive surface water or waste water, fitted with a grating or sealed cover and discharging through a trap			Тгар Туре	Text			Identifies the predefined types of trap from which the type required may be set.			1 2 F 2				the contract of o		Cover Keigh Namebro Cover Width Namebro New Cover Width New Cover Namebro New Cover Namebro New Cover Namebro New Cover Namebro N		Identifies the pattern of inlet connections to a trap	0,1,2,3 or 4: inlet connections and arrangement may vary. The outlet is either vertical or is placed at the bottom (south side) of the trap (when viewed in plan). Position 1 is to the left (west), position 2 is to the top (north), position 3 is to the right (east) and position 4 is to the bottom (south).			Number	Back Inlet Pattern Type																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
--	--------------	--	---	------------------	------	---------	-------------------------		Cover Width				mm	Inch	Number	Cover Length		In sort Same records See Nome of the common services of the seek					Inch				Named connection file Named are concerned after, the case of a concerned with the concerned after, the case of a a						+			Nomined Seep Depth Nomber Inch min Inch Inc					Inch	_			Naminal Body, Width Namer Inch Naminal Engly, Width Namer Dublic Connection Size Author Name Dublic Connection Size Author Name Name Name Name Name Name Name Name		. ,							Number Inch				mm	Inch	Number	Nominal Body Length		Flow Meter Flow Fort Fort Cargo, Cas. Oil, Water, User Defined Montent of a device that is sedered to address that the flow meter or anything the per-specified hype of the flow meter or counter flow meter from which the type required may be set.				mm	Inch	Number	Nominal Body Width		Memory Type Fort Function Functio		Size of the outlet connection from the object.		mm	Inch	Number	Outlet Connection Size		Purpose Text Master, Submarker, S	IfcFlowMeter	·					Flow Meter		Purpose Text Master, Submarder, Other, Unknown, Unsex Submerer, Other, Unknown, Unsex Submarder, Other, Unknown, Unsex Submarder, Other, Unknown, Unsex Submarder, Other, Not. Known, Unsex Submarder, Other, Not. Known, Unsex Submarder, Other, University Submarder, Other, Not. Known, Unsex Submarder, Other, University Submarder, Other, Other Submarder, Other, Other Submarder, O		Identifies the predefined types of meter from which the type required may be set.	9.1			Text	Meter Type		Remote Reading Logical Free Fall True or False Fal		Enumeration defining the purpose of the flow meter occurrence.	Master, Submaster,			Text	Purpose		Remote Reading Logical Frue or False Indicates whether the meter has a connection for remote reading through connection of a communication device (set TRUE) on ord Left FALSE). Next Amps Amps Amps Amps Amps Amps Amps Amps						Text	Read Out Type		Energy Meter Maximum Current Number Amps Device that measures, indicates and sometimes records, the energy usage in a system.						Logical	Remote Reading		Maximum Current Multiple Tariff Logical Muntiple Tariff Logical Number Amps Amps True or False Inch minimal current that a device is certified to handle. Multiple Tariff Logical Number Amps Amps True or False The maximum allowed current that a device is certified to handle. Multiple Tariff Logical True or False The maximum allowed current that a device is certified to handle. Multiple Tariff Logical True or False The maximum allowed current that a device is certified to handle. Multiple Tariff Logical True or False The maximum allowed current that a device is certified to handle. Multiple Tariff Logical True or False Text Device that measures, indicates and sonetimes records, the volume of gas that passes through it without interrupting the flow. Device that measures, indicates and sonetimes records the wolume of gas that passes through it without interrupting the flow. Maximum Pressure Loss Number Oil Meter Device that measures and sometimes records, the volume of oil that passes through it without interrupting the flow. Defines the size of inlet and outlet pipe connections to the meter. Device that measures, indicates and sometimes records, the volume of oil that passes through it without interrupting the flow. Maximum Plow Rate Number Maximum Plow Rate Number Gallons/Minute Uters per Minute Defines the size of inlet and outlet pipe connections to the meter. Defines the size of inlet and outlet pipe connections to the meter. Maximum Plow Rate Number Device that measures, indicates and sometimes records, the volume of oil that passes through it without interrupting the flow. Atmospheric Vacuum breaker, Anti Sphon valve, Double Cheef Backflow Preventer installed Atmospheric Vacuum breaker, Anti Sphon valve, Double Cheef Backflow Preventer installed Atmospheric Vacuum breaker, Anti Sphon valve, Double Cheef Backflow Preventer Reduced Pressure Backflow Preventer Pressure Backflow Preventer		TRUE) or not (set FALSE).							Multiple Tariff Logical True or False Indicates whether meter has built-in support for multiple tariffs (variable energy cost rates).		Device that measures, indicates and sometimes records, the energy usage in a system.					Energy Weter		Sominal Current Number Amps The nominal current that is designed to be measured.		The maximum allowed current that a device is certified to handle.			Amps	Number	Maximum Current		Gas Meter Connection Size Number Inch mm Defines the flow.					_				Connection Size					Amps	Number			Connection Size Number Fext Gas Type Text Maximum Flow Rate Number Oil Meter Collection Size Number Number Oil Meter Number Maximum Flow Rate Number Number Number Oil Meter Number Number Number Number Assimation Size Number							Gas Weter		Gas Type				mm	Inch	Number	Connection Size		Maximum Pressure Loss Number PSI Pressure loss expected across the meter under conditions of maximum flow.						Text	Gas Type		Maximum Pressure Loss Number Defines that measures, indicates and sometimes records, the volume of oil that passes through it without interrupting the flow. Connection Size Number Number Inch Maximum Flow Rate Number Gallons/Minute Liters per Minute Maximum rate of flow which the meter is expected to pass. Water Meter Backflow Preventer Type Text Atmospheric Vacuum breaker, Anti Siphon valve, Double Check Backflow Preventer, Pressure Vacuum breaker Reduced Pressure Backflow Preventer where the flow. Atmospheric Vacuum breaker Reduced Pressure Backflow Preventer Pressure Backflow Preventer Pressure Backflow Preventer Pressure Vacuum Breaker Reduced Pressure Backflow Preventer Pressure Vacuum Breaker Reduced Pressure Backflow Preventer Preventer Pressure Preventer Preventer Preventer Preventer Preventer Preventer Preventer Prev		Maximum rate of flow which the meter is expected to pass.		Liter per Minute		Number	Maximum Flow Rate		Oil Meter Connection Size Number Number Number Gallons/Minute Uiters per Minute Water Meter Backflow Preventer Type Text Atmospheric Vacuum breaker, Anti Siphon valve, Pouble Check Backflow Preventer, Pressure Vacuum breaker Reduced Pressure Backflow Preventer Reduced Pressure Backflow Preventer Preventer Preventer Device that measures, indicates and sometimes records, the volume of water that passes through it without interrupting the flow. Device that measures, indicates and sometimes records, the volume of water that passes through it without interrupting the flow. Identifies the type of backflow preventer installed Device that measures, indicates and sometimes records, the volume of water that passes through it without interrupting the flow. Identifies the type of backflow preventer installed		Pressure loss expected across the meter under conditions of maximum flow.				Number	Maximum Pressure Loss		Connection Size Number Maximum Flow Rate Number Gallons/Minute Liters per Minute Defines the size of inlet and outlet pipe connections to the meter. Maximum rate of flow which the meter is expected to pass. Device that measures, indicates and sometimes records, the volume of water that passes through it without interrupting the flow. Atmospheric Vacuum breaker, Anti																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
Siphon valve, Double Check Backflow Preventer, Pressure Vacuum breaker Reduced Pressure Backflow Preventer Preventer		Device that measures, indicates and sometimes records, the volume of oil that passes through it without interrupting							Maximum Flow Rate Number Gallons/Minute Liters per Minute Device that measures, indicates and sometimes records, the volume of water that passes through it without interrupting the flow. Atmospheric Vacuum breaker, Anti Siphon valve, Double Check Backflow Preventer, Pressure Vacuum breaker Reduced Pressure Backflow Preventer Reduced Pressure Backflow Preventer Maximum rate of flow which the meter is expected to pass. Device that measures, indicates and sometimes records, the volume of water that passes through it without interrupting the flow. Identifies the type of backflow preventer installed				mm	Inch	Number	Connection Size		Backflow Preventer Type Text Atmospheric Vacuum breaker, Anti Siphon valve, Double Check Backflow Preventer, Pressure Vacuum breaker Reduced Pressure Backflow Preventer Reduced Pressure Backflow Preventer Reduced Pressure Backflow Preventer Backflow Preventer Reduced Pressure Backflow Preventer									Backflow Preventer Type Text Atmospheric Vacuum breaker, Anti Siphon valve, Double Check Backflow Preventer, Pressure Vacuum breaker Reduced Pressure Backflow Preventer Reduced Pressure Backflow Preventer							Water Meter		Connection Size Number Not known Unset Defines the size of inlet and outlet pipe connections to the meter.		Identifies the type of backflow preventer installed	Atmospheric Vacuum breaker, Anti Siphon valve, Double Check Backflow Preventer, Pressure Vacuum breaker Reduced Pressure Backflow Preventer Other Not known Unset													1			---------------------------	------------	-------------------	-----------------------	-------------------------------	--	------------------	---	--		Maximum Flow Rate	Number	Gallons/Minute	Liters per Minute		Maximum rate of flow which the meter is expected to pass.					Maximum Pressure Loss	Number	PSI			Pressure loss expected across the meter under conditions of maximum flow.					Type	Text			Compound, Inferential,	Defines the allowed values for selection of the flow meter operation type.					1,75				Piston, Other, Not Known,	7									Unset						Garbage Disposal					Electrically operated device that reduces kitchen or other waste into fragments small enough to be flushed into a drainage	IfcWasteTerminal				Carbage Disposar					system.					Disposal Type	Text				Identifies the predefined types of disposal from which the type required may be set.					Drain Connection Size	Number	Inch	mm		Size of the drain connection inlet to the waste disposal unit.					Nominal Depth	Number	Inch	mm		Nominal or quoted depth of the object measured from the inlet drain connection to the base of the unit.					Outlet Connection Size	Number	Inch	mm		Size of the outlet connection from the waste disposal unit.					Gutter					Gutter segment type common attributes.	IfcPipeSegment				Gutter Type	Text				Identifies the predefined types of gutter from which the type required may be set.	no ipesegment				Flow Rating	Number	Gallons/Minute	Liters per Minute		Actual flow capacity for the gutter. Value of 0.00 means this value has not been set.					Tiow Nating	Number	Gallotis/Williate	Liters per williate		Actual now capacity for the gutter. Value of 0.00 means this value has not been set.					Slope	Number	Degrees			Angle of the gutter to allow for drainage.					Heat Exchanger	14dilliber	Degrees			A heat exchanger is a device used to provide heat transfer between non-mixing media such as plate and shell and tube	IfcHeatExchanger				Treat Exchanger					heat exchangers.	Herieutzkendiger				Exchanger Type	Text				Identifies the predefined types of exchanger from which the type required may be set.					Arrangement	Text			Counterflow, Crossflow,	Defines the basic flow arrangements for the heat exchanger					Artungement	Text			Parallelflow, Multipass, User	between the basic now arrangements for the near exchange									Defined						Plate Exchanger				Defined	Common attributes of plate heat exchanger					Number Of Plates	Number	None		1,2,3,	Number of plates used by the plate heat exchanger.						Number	None				Ifelatoreanter				Interceptor					An interceptor is a device designed and installed in order to separate and retain deleterious, hazardous or undesirable	IfcInterceptor									matter while permitting normal sewage or liquids to discharge into a collection system by gravity.						- .									Interceptor Type	Text				Identifies the predefined types of interceptor from which the type required may be set.					Cover Length	Number	Inch	mm		The length measured along the x-axis in the local coordinate system or the radius (in the case of a circular shape in plan) of										the cover					Cover Width	Number	Inch	mm		The length measured along the y-axis in the local coordinate system of the cover					Inlet Connection Size	Number	Inch	mm		Size of the inlet connection.					Nominal Body Depth	Number	Inch	mm		Nominal or quoted =length, measured along the z-axis of the local coordinate system of the object, of the body of the										object.					Nominal Body Length	Number	Inch	mm		Nominal or quoted length, measured along the x-axis of the local coordinate system of the object, of the body of the										object.					Nominal Body Width	Number	Inch	mm		Nominal or quoted length, measured along the y-axis of the local coordinate system of the object, of the body of the										object.					Outlet Connection Size	Number	Inch	mm		Size of the outlet connection.					Ventilating Pipe Size	Number	Inch	mm		Size of the ventilating pipe(s).					Pump					A pump is a device which imparts mechanical work on fluids or slurries to move them through a channel or pipeline.	IfcPump														Pump Type	Text				Identifies the predefined types of pump from which the type required may be set.					Base Type	Text			Frame, Base, None, User	Defines general types of pump bases									Defined						Drive Connection Type	Text			Directdrive, Beltdrive,	The way the pump drive mechanism is connected to the pump					Impeller Diameter	Number	Inch	mm		Diameter of pump impeller					Flowrate	Number		Liters per Minute		The actual operational fluid flowrate.					Mechanical Efficiency	Number	Percent	Litters per ivilliate		The pumps operational mechanical efficiency.					Overall Efficiency	Number	Percent			The pump and motor overall operational efficiency.					1										Procesure Rice	Number	Horsepower			The actual power consumption of the pump. The developed prossure					Pressure Rise	Number	PSI			The developed pressure.					Rotation Speed	Number	RPM			Pump rotational speed.					Connection Size	Number	Inch	mm		The connection size of the to and from the pump.					Flow Rate Range	Number	Gallons/Minute	Liters per Minute		Allowable range of volume of fluid being pumped against the resistance specified.					fl. o. i.e. o	<u>.</u>									Flow Resistance Range	Number	PSI			Allowable range of frictional resistance against which the fluid is being pumped.					Net Positive Suction Head	Number	Feet or PSI			Minimum liquid pressure at the pump inlet to prevent cavitation.					Nominal Rotation Speed	Number	RPM			Pump rotational speed under nominal conditions.					Temperature Range	Number	Degrees F/C			Allowable operational range of the fluid temperature.					Roof Drain					Pipe fitting, set into the roof, that collects rainwater for discharge into the rainwater system.	IfcWasteTerminal				Drain Type	Text				Identifies the predefined types of drain from which the type required may be set.					Cover Length	Number	Inch	mm		The length measured along the x-axis in the local coordinate system or the radius (in the case of a circular shape in plan) of					Cover Width	Number	Inch	mm		The length measured along the y-axis in the local coordinate system of the cover of the drain.					Nominal Body Depth	Number	Inch	mm		Nominal or quoted length measured along the z-axis in the local coordinate system of the drain.					Monimal Body Deptil	Number	IIICII	111111		resistant of quoted length measured along the 2-axis in the local coordinate system of the drain.					Nominal Body Length	Number	Inch	mm		Nominal or quoted length measured along the x-axis in the local coordinate system or the radius (in the case of a circular					---	----------------	------------	--------	---	---	---------------------	-----	---		Nominal Body Width	Number	Inch	mm		Nominal or quoted length measured along the y-axis in the local coordinate system of the drain.					Outlet Connection Size																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Number	Inch	mm		Size of the outlet connection from the object.					Shower					Installation or waste water appliance that emits a spray of water to wash the human body.	IfcSanitaryTerminal				Shower Type	Text			Drench, Individual, Tunnel, User Defined	Identifies the predefined types of shower from which the type required may be set.					Color	Text				Color selection for this object.					Drain Size	Number	Inch	mm		The size of the drain outlet connection from the object.					Has Tray	Logical			True or False	Indicates whether the shower has a separate receptacle that catches the water in a shower and directs it to a waste outlet.					Nominal Depth	Number	Inch	mm		Nominal or quoted depth of the object.					Nominal Length	Number	Inch	mm		Nominal or quoted length of the object.					Nominal Width	Number	Inch	mm		Nominal or quoted width of the object.					Shower Head Description	Text				A description of the shower head(s) that emit the spray of water.					Sink or Lavatory					Waste water appliance for receiving, retaining or disposing of domestic, culinary, laboratory or industrial process liquids.	lfcSanitaryTerminal				Sink Type	Text			Belfast, Bucket, Cleaners,	Identifies the predefined types of sink from which the type required may be set.									Combination_Left,										Combination_Right,										Combination_Double, Drip,										Laboratory, Plaster, Pot,										Rinsing, Preparation, Bar,										User Defined																										Color	Text			White, Almond, User Defined	Color selection for this object.															Drain Size	Number	Inch	mm		The size of the drain outlet connection from the object.					Mounting	Text			BackToWall, Pedestal,	Selection of the form of mounting of the sink									CounterTop, WallHung, User										Defined						Mounting Offset	Text				For counter top mounted sinks, the vertical offset between the top of the sink and the counter top.					Nominal Depth	Number	Inch	mm		Nominal or quoted depth of the object.					Nominal Length	Number	Inch	mm		Nominal or quoted length of the object.					Nominal Width	Number	Inch	mm		Nominal or quoted width of the object.					Tank	- .				A tank is a vessel or container in which a fluid or gas is stored for later use	IfcTank				Tank Type	Text	Callana	Litoro	Fuel, Oil, Water, Rain Water,	Identifies the predefined types of tank from which the type required may be set.					Nominal Capacity	Number	Gallons	Liters	Manhala Haar Dafinad	The total nominal or design volumetric capacity of the tank.					Access Type	Text Number	Gallons	Litors	Manhole, User Defined	Defines the types of access (or cover) to a tank that may be specified The total offective or actual volumetric capacity of the tank					Effective Capacity		Gallons	Liters	Comi Ellintical	The total effective or actual volumetric capacity of the tank. Defines the types of end shapes that can be used for preformed tanks					End Shape Type	Text			Semi-Elliptical, ASMEFlanged Dished,	Defines the types of end shapes that can be used for preformed tanks					First Curvature Radius	Number	Inch	mm	Asivici langed Disned,	FirstCurvatureRadius should be defined as the base or left side radius of curvature value.					Has Ladder	Logical			True or False	Indication of whether the tank is provided with a ladder					Has Visual Indicator	Logical			True or False	Indication of whether the tank is provided with a visual indicator					Nominal Depth	Number	Feet			The nominal depth of the tank.										Note: Not required for a horizontal cylindrical tank.					Nominal Length Or Diameter	Number	Feet		-	The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank.					Nominal Width Or Diameter	Number	Feet		-	The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank.			-							Note: Not required for a vertical cylindrical tank.					Number Of Sections	Number	None		1,2,3	Number of sections used in the construction of the tank. Default is 1.										Note: All sections assumed to be the same size.					Operating Weight	Number	Lbs/Kg			Operating weight of the tank including all of its contents.					Pattern Type	Text				Defines the types of pattern (or shape of a tank that may be specified.									Cylinder, Rectangular, Other,										Not Known						Second Curvature Radius	Number	Inch	mm		SecondCurvatureRadius should be defined as the top or right side radius of curvature value.					Tank Composition	Text	IIICII	111111		Defines the level of element composition where					Talik Composition	TEXT			User Defined	Defines the level of element composition where					Expansion Tank				oser Dennieu	Common attributes of an expansion type tank.					-Aparision rain	Number	PSI			Nominal or design operating pressure of the tank.					Charge Pressure		, 51								Charge Pressure Pressure Regulator Setting		PSI			Pressure that is automatically maintained in the tank.		l l			Pressure Regulator Setting	Number	PSI PSI			Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates.					Pressure Regulator Setting Relief Valve Setting		PSI PSI			Pressure at which the relief valve activates.					Pressure Regulator Setting	Number				·									T				1 1		-----	---------------------------------	------------------	--------------------	----------------------	-----------------------------	--	---------------------	-----			Pressure Regulator Setting	Number	PSI			Pressure that is automatically maintained in the tank.					Relief Valve Setting	Number	PSI			Pressure at which the relief valve activates.					Sectional Tank		N.			Fixed vessel constructed from sectional parts with one or more compartments for storing a liquid.					Number Of Sections	Number	None			Number of sections used in the construction of the tank					Section Length	Number	Inch	mm		The length of a section used in the construction of the tank.					Section Width	Number	Inch	mm		The width of a section used in the construction of the tank.					let Bowl					Soil appliance for the disposal of excrement.	IfcSanitaryTerminal				Toilet Type	Text				Identifies the predefined types of toilet from which the type required may be set.									CloseCoupled,										LooseCoupled, SlopHopper,										User Defined						Color	Text			White, Almond, User Defined	Color selection for this object					COIOI	TCAL			Winte, Aimona, Oser Berinea	edioi selection for this object					Nominal Depth	Number	Inch	mm		Nominal or quoted depth of the object.					Nominal Length	Number	Inch	mm		Nominal or quoted length of the object.					Nominal Width	Number	Inch	mm		Nominal or quoted width of the object.					Pan Mounting	Text				The property defines the forms of mounting or fixing of the sanitary terminal					Ç				WallHung, User Defined	, , ,					Spillover Level	Number	Inch	mm		The level at which water spills out of the terminal.					Toilet Pan Type	Text			Siphonic, Squat, WashDown,	The property defines the types of toilet pan									WashOut, User Defined															Toi	let Tank					A water storage unit attached to a sanitary terminal that is fitted with a device, operated automatically or by the user, that	IfcSanitaryTerminal									discharges water to cleanse a water closet (toilet) pan, urinal or slop hopper.					Tank Capacity	Number	Gallons	Liters		Volumetric capacity of the tank					Tank Color	Text			White, Almond, User Defined	Color of the object.					Toul, Height	Numahau	Inch	mm	Number Value or Nego	Enumeration that identifies the height of the tool or no tout					Tank Height Flush Rate	Number Number		Liters per Minute		Enumeration that identifies the height of the tank or no tank The minimum and maximum volume of water used at each flush.					riusii kate	Number	Gallotis/Ivilliute	Liters per ivilliute		The minimum and maximum volume of water used at each mush.					Flush Type	Text			Lever, Pull, Push, Sensor,	The types of flushing mechanism that may be specified for tanks and sanitary terminals					78-				User Defined	, , , , , , , , , , , , , , , , , , ,					Is Automatic Flush	Logical			True or False	Value that determines if the tank is flushed automatically either after each use or periodically					Is Single Flush	Logical			True or False	Indicates whether the tank is single flush				Uri						Soil appliance that receives urine and directs it to a waste outlet.	IfcSanitaryTerminal				Urinal Type	Text			Bowl, Slab, Stall, Trough,	Identifies the predefined types of urinal from which the type required may be set.									Wall Mounted, User Defined																Color																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Text			White, Almond, User Defined	Color of the urinal.					Mounting	Text			BackToWall, Pedestal,	Selection of the form of mounting					Mounting	Text			WallHung, User Defined	Selection of the form of mounting					Nominal Depth	Number	Inch	mm		Nominal or quoted depth of the object.					Nominal Length	Number	Inch	mm		Nominal or quoted depth of the object.					Nominal Width	Number	Inch	mm		Nominal or quoted width of the object.					Spillover Level	Number	Inch	mm		The level at which water spills out of the object.				Val	-					A valve is used in a building services piping distribution system to control or modulate the flow of the fluid.	IfcValve				Valve Type	Text				Identifies the predefined types of valve from which the type required may be set.					Valve Pattern	Text				The configuration of the ports of a valve according to either the linear route taken by a fluid flowing through the valve or									Straight_2_Port, Straight_3	by the number of ports									_Port, Crossover_4_Port																Body Material	Text				Material from which the body of the valve is constructed.					Close Off Rating	Number	PSI			Close off rating.					Flow Coefficient	Number	Kv or Cv			Flow coefficient					Measured Flow Rate	Number	GPM			The rate of flow of a fluid measured across the valve.					Measured Pressure Drop	Number	PSI			The actual pressure drop in the fluid measured across the valve.					Percentage Open	Number	%			The ratio between the amount that the valve is open to the full open position of the valve.					Size Procesure	Number	Inch	mm		The size of the connection to the valve (or to each connection for faucets, mixing valves, etc.).					Test Pressure	Number	PSI			The maximum pressure to which the valve has been subjected under test. The machanism by which the valve function is achieved.					Valve Mechanism Valve Operation	Text Text			71 1	The mechanism by which the valve function is achieved The method of valve operation					Working Pressure	Number	PSI			The normally expected maximum working pressure of the valve.					-		+								Air Vent					Valve used to release air from a pipe or fitting.					Air Vent Is Automatic	Logical				Valve used to release air from a pipe or fitting. Indication of whether the valve is automatically operated					Faucet					A small diameter valve, with a free outlet, from which water is drawn.				----	---	---------	----------------	-------------------	--	--	-----------------------------	------			Faucet Function	Text		1		Defines the operating temperature of a faucet that may be specified.					Faucet Operation	Text				Defines the range of ways in which a faucet can be operated that may be specified					Faucet Ton Description	Text		1	NonConcussiveSelfClosing,	Description of the operating mechanism/top of the faucet.					Faucet Top Description Faucet Type	Text			Rih Globe Divortor Divided	Defines the range of faucet types that may be specified					raucet Type	Text			Flow Combination, Pillar,	Defines the range of radicel types that may be specified					Finish	Text			Chrome, Bronze, User	Description of the finish applied to the faucet.									Defined						Flush Valve					Valve that flushes a predetermined quantity of water to cleanse a WC, urinal or slop hopper.										Note that a flushing valve is constrained to have a 2 port pattern.					Flushing Rate	Number	Gallons/Minute	Liters per Minute		The predetermined quantity of water to be flushed.															Has Integral Shut Off Device	Logical			True or False	Indication of whether the flushing valve has an integral shut off device fitted					Is High Pressure	Logical			True or False	Indication of whether the flushing valve is suitable for use on a high pressure water main					Gas Tap Valve	Lasiaal				A small diameter valve, used to discharge gas from a system.					Has Hose Union	Logical			True or False	Indicates whether the gas tap is fitted with a hose union connection					Hose Bib Has Hose Union	Logical				A small diameter valve, used to drain water from a tank or water filled system. Indicates whether the drawoff cock is fitted with a hose union connection					Isolation Valve	Logical				Valve that is used to isolate system components.					Is Normally Open	Logical				If TRUE, the valve is normally open. If FALSE is normally closed.					Isolating Purpose	Text				Defines the purpose for which the isolating valve is used since the way in which the valve is identified as an isolating valve					issualing i di pose	i CAL				may be in the context of its use.					Mixing Valve					A valve where typically the temperature of the outlet is determined by mixing hot and cold water inlet flows.					Mixer Control	Text				Defines the form of control of the mixing valve.					Outlet Connection Size	Number	Inch	mm		The size of the pipework connection from the mixing valve.					Pressure Reducing Valve	Text				Valve that reduces the pressure of a fluid immediately downstream of its position in a pipeline to a preselected value or by					Downstream Pressure	Number	psi			The operating pressure of the fluid downstream of the pressure reducing valve.					Upstream Pressure	Number	psi			The operating pressure of the fluid upstream of the pressure reducing valve.					Pressure Relief Valve	Text	·			Spring or weight loaded valve that automatically discharges to a safe place fluid that has built up to excessive pressure in										pipes or fittings.					Relief Pressure	Number	psi			The pressure at which the spring or weight in the valve is set to discharge fluid.					pration Isolator					A vibration isolator is a device used to minimize the effects of vibration transmissibility in a building	IfcVibrationIsolator				Height	Number	Inch	mm		Height of the vibration isolator before the application of load.					Isolator Compressibility	Text				The compressibility of the vibration isolator.					Isolator Static Deflection	Number	Inch	mm		Static deflection of the vibration isolator.					Maximum Supported Weight Vibration Transmissibility	Number	Lbs/Kgs			The maximum weight that can be carried by the vibration isolator.					sh Basin or Lavatory	Number	%			The vibration transmissibility percentage. Waste water appliance for washing the upper parts of the body.	IfcSanitaryTerminal				Wash Hand Basin Type	Text				Identifies the predefined types of wash basin or lavatory from which the type required may be set.	ii Coaiii Cai y Terriiii ai				Wash Hana bashi Type	TEXT			Hospital, Tipup, Vanity,	racitaties the predefined types of wash basin or lavatory from which the type required may be set.									Washfountain,										WashingTrough, User										Defined																Color	Text			White, Almond, User Defined	Color of the object.					Dunin Cina	A: 1	In 1			The size of the during system from the object					Drain Size	Number	Inch	mm		The size of the drain outlet connection from the object.					Mounting	Text			BackToWall, Pedestal, CounterTop, WallHung, User	Selection of the form of mounting									Defined						Mounting Offset	Number	Inch	mm	2003	For counter top mounted basins the vertical offset between the top of the sink and the counter top.					Nominal Depth	Number	Inch	mm		Nominal or quoted depth of the object.					Nominal Length	Number	Inch	mm		Nominal or quoted length of the object.					Nominal Width	Number	Inch	mm		Nominal or quoted width of the object.				Wa	ste Floor Trap					Pipe fitting, set into the floor, that retains liquid to prevent the passage of foul air.	IfcWasteTerminal				Тгар Туре	Text				Identifies the predefined types of waste trap used in combination with the floor trap from which the type required may be								1		set.					Cover Length	Number	Inch	mm		The length measured along the x-axis in the local coordinate system or the radius (in the case of a circular shape in plan) of					Cover Width	Numahar	Inch	pa ===		the cover The length measured along the views in the level coordinate system of the cover of the trans					Cover Material	Number	Inch	mm		The length measured along the y-axis in the local coordinate system of the cover of the trap. Material from which the cover or grating is constructed.					Cover Material	Text			33, Aluminum, User Defined	Material from which the cover or grating is constructed.					Has Strainer	Logical			True or False	Indicates whether the trap has a strainer					Inlet Connection Size	Number	Inch	mm		Size of the inlet connection(s)					Inlet Pattern Type	Text				Identifies the pattern of inlet connections to a trap					<i>"</i>	2			and arrangement may vary.	·						. ——	-		 			 								T	T																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
------------------------	---------	------	--------------------	---	------------------	---	---		Is For Grey Water	Logical		True or Fal	lndicates if the purpose of the floor trap is to receive grey water					Nominal Body Depth	Number	Inch	mm	Nominal or quoted length measured along the z-axis in the local coordinate system of the chamber of the trap.					Nominal Body Length	Number	Inch	mm	Nominal or quoted length measured along the x-axis in the local coordinate system or the radius (in the case of a circular shape in plan) of the chamber of the trap.					Nominal Body Width	Number	Inch	mm	Nominal or quoted length measured along the y-axis in the local coordinate system of the chamber of the trap.					Outlet Connection Size	Number	Inch	mm	Size of the outlet connection from the object.					Spillover Level	Number	Inch	mm	The level at which water spills out of the terminal.					Waste Trap				Pipe fitting, set adjacent to a sanitary terminal, that retains liquid to prevent the passage of sewer gases	IfcWasteTerminal				Waste Trap Type	Text			Identifies the predefined types of waste trap from which the type required may be set.					Inlet Connection Size	Number	Inch	mm	Size of the inlet connection(s)					Outlet Connection Size	Number	Inch	mm	Size of the outlet connection from the object.					Water Filter				A filter is an apparatus used to remove particulate or gaseous matter from fluids and gases	IfcFilter				Water Filter Type	Text		Filtration, Purifi	cation, Identifies the predefined types of water filter from which the type required may be set.								Softening, User I	Defined					t-Specific M						--------------	-----------	--	--	--		LEED Cert.						Check	Submittal																																																																																																																																																																																																												`					--	---	--	--	--																																																								 	 	 	 _		------	------	------	-------			-		-	-			--	---	------	---	---	--																																																																																	 																																															_	_	-	-	-	_			---	---	---	---	---	---	--																																																																																																			<u> </u>				--	----------	--	--						BIMForum LOD Specification 2020 Part II	D30 -	HVAC			-------	------	--		-------	------	--		D30 - HVAC											---	----------------	--------------	----------------	---	---	---------------------	-----------	-------------	-------------		Baseline This work is licensed under the Creative Commons					Part 1 - Attribute Description			Part 3 - Ex	ample Proje		Attribution-NonCommercial 4.0 International License								Estimating	Estimating				T	1								Attribute	Data Type	Units - Imp.	Units - Metric	Option Examples	Commentary	IFC Name	COBie Tag	Est. 1	Bid Pkg.		Global Attributes											Component ID	Text				Project assigned number for components (e.g. tag number)						Condition Status	Text			New, Existing, Demolish, Temporary, User Defined	Status of the element, predominately used in renovation or retrofitting projects						Room Number	Text				Room number where component to be /is installed						Room Name	Text				Room name where component to be/is installed						Story Number	Text				Floor or level room is located						Manufacturer Name	Text				The organization that manufactured and/or assembled the item.						Product Name	Text				The descriptive model name of the product model (or product line) as assigned by the manufacturer of the manufactured						Model Designation	Text				The model number or designator of the product model (or product line) as assigned by the manufacturer of the						Target LOD	Text			100, 200, 300, 350, 400							Current LOD	Text			100, 200, 300, 350, 400																		Component characteristics					Defines properties of individual instances of manufactured products that may be given by the manufacturer.						Acquisition Date	Date Time	Date			The date that the manufactured item was purchased.						Assembly Place	Text			Onsite, factory, other offsite	Enumeration defining where the assembly is intended to take place, either in a factory, other offsite location or on the						Bar Code	Text				The identity of the bar code given to an occurrence of the product.						Batch Reference Production Year	Text Number	Year			The identity of the batch reference from which an occurrence of a product is taken. The year of production of the manufactured item.						Serial Number	Text	rear			The serial number assigned to an occurrence of a product.						Design Performance	Text				The serial number assigned to an occurrence of a product.						Service Life					Captures the period of time that an artifact will last.						Mean Time Between Failure	Number	Days			The average time duration between instances of failure of a product.						Service Life Duration	Number	Year(s)			The length or duration of a service life.						Service Life Factors	Text	Tear(5)			Captures various factors that impact the expected service life of elements within the system or zone.						Design Level	Text				Adjustment of the service life resulting from the effect of design level employed.						Indoor Environment	Text				Adjustment of the service life resulting from the effect of the indoor environment (where appropriate).						In Use Conditions	Text				Adjustment of the service life resulting from the effect of the conditions in which components are operating.						Maintenance Level	Text				Adjustment of the service life resulting from the effect of the level or degree of maintenance applied to components.						Outdoor Environment	Text				Adjustment of the service life resulting from the effect of the outdoor environment (where appropriate)						Quality Of Components	Text				Adjustment of the service life resulting from the effect of the quality of components used.						Work Execution Level	Text				Adjustment of the service life resulting from the effect of the quality of work executed.						Warranty					An assurance given by the seller or provider of an artefact that the artefact is without defects and will operate as						Exclusions	Text				Items, conditions or actions that may be excluded from the warranty or that may cause the warranty to become void.						Is Extended Warranty	Logical			True or False	Indication of whether this is an extended warranty whose duration is greater than that normally assigned to an artefact						Point Of Contact	Text				The organization that should be contacted for action under the terms of the warranty.						Warranty Content	Text				The content of the warranty.						Warranty End Date	Date Time	Date			The date on which the warranty expires.						Warranty Identifier	Text				The identifier assigned to a warranty.						Warranty Period	Number	Year(s)			The time duration during which a manufacturer or supplier guarantees or warrants the performance of an artefact.						Warranty Start Date	Date Time	Date			The date on which the warranty commences.						Item-Specific Attributes											Air Conditioning Unit					A unitary packaged air-conditioning unit typically used in residential or light commercial applications.	IfcUnitaryEquipment					AC Unit Type	Text				The property enumeration defines the types of air conditioning unit that may be specified within the property set.						Air Handler Construction	Text			Manufactured item, constructed on site,	Enumeration defining how the air handler might be fabricated.						Air Handler Fan Coil Arrangement	Text			Blow Through, Draw Through, unknown	Enumeration defining the arrangement of the supply air fan and the cooling coil.						Condenser Entering Temperature	Number	Degrees F	Degrees C	040.7 411410411	Temperature of fluid entering condenser.						Condenser Flowrate	Number	Gallons/Min	Liters/Min		Flow rate of fluid through the condenser.						Condenser Leaving Temperature	Number	Degrees F	Degrees C		Temperature of fluid leaving condenser.						Cooling Efficiency	Number	None																																																																																																																																																																																																																																																																																																																																																															
Coefficient of Performance: Ratio of cooling energy output to energy input under full load operating conditions.						Dual Deck	Logical	1		True or False	Does the Air Handler have a dual deck? TRUE = Yes, FALSE = No.						Heating Capacity	Number	BTU/Hr			Heating capacity.						Heating Efficiency	Number	None			Heating efficiency under full load heating conditions.							•		· '			•	•					Latent Cooling Capacity	Number	Tonnage			Latent cooling capacity.			-----	---	--	---------------------	-----------------	---	---	-------------------			Outside Air Flowrate	Number	Cubic	Liter/Minute		Flow rate of outside air entering the unit.				Outside All Flowrate	Number	Feet/Minute	Liter/ivilliate		riow rate of outside an entering the unit.				Sensible Cooling Capacity	Number	BTU/Hr			Sensible cooling capacity.				Terminal Box		2.0,			an air terminal box typically participates in an HVAC duct distribution system and is used to control or modulate the	IfcAirTerminalBox								amount of air delivered to its downstream ductwork				Terminal Type	Text			VAV, CAV, User Defined	The property enumeration defines the types of air terminal box that may be specified within the property set.													Arrangement Type	Text			Single Duct, Dual Duct	Terminal box arrangement.									Single Duct: Terminal box receives warm or cold air from a single air supply duct.									Dual Duct: Terminal box receives warm and cold air from separate air supply ducts.				Airflow Rate Range	Number	Cubic	Liter/Minute		Range of airflow that can be delivered.				A: D	N. 1	Feet/Minute	1 /5.4.						Air Pressure Range	Number	Cubic	Liter/Minute		Allowable air static pressure range at the entrance of the air terminal box.				Has Fan	Text	Feet/Minute		True or False	Terminal box has a fan inside (fan powered box).				Has Return Air	Logical			True or False	Terminal box has a fair mistee (fair powered box). Terminal box has return air mixed with supply air from duct work.				Has Sound Attenuator	Logical			True or False	Terminal box has a sound attenuator.				Housing Thickness	Logical	Inch	mm	True or ruise	Air terminal box housing material thickness.				Nominal Air Flow Rate	Number	Cubic	Liter/Minute		Nominal airflow rate.						Feet/Minute	,						Nominal Damper Diameter	Number	Inch	mm		Nominal damper diameter.				Nominal Inlet Air Pressure	Number	PSI	Pa		Nominal airflow inlet static pressure.				Operation Temperature Range	Number	Degrees F	Degrees C		Allowable operational range of the ambient air temperature.				Reheat Type	Text				Terminal box reheat type.				Return Air Fraction Range	Number	None			Allowable return air fraction range as a fraction of discharge airflow.				Airflow Curve	Number	Cubic	Liter/Minute		Air flowrate versus damper position relationship; airflow = f (valve position).						Feet/Minute							Atmospheric Pressure	Number	PSI	Pa		Ambient atmospheric pressure.				Damper Position	Number	None		1,2,3	Control damper position, ranging from 0 to 1.				Sound Rating	Number	dB			Sound performance.			Air	Terminal					An air terminal is a terminating or origination point for the transfer of air between distribution system(s) and one or	IfcAirTerminal								more spaces. It can also be used for the transfer of air between adjacent spaces.				Air Terminal Type	Text				The property enumeration defines the types of air terminal that may be specified within the property set.				Air Diffusion Performance Index	Number	None			The Air Diffusion Performance Index (ADPI) is used for cooling mode conditions. If several measurements of air velocity				7 III Diriasion i cirormanee maex	14dilloci	None			and air temperature are made throughout the occupied zone of a space, the ADPI is the percentage of locations where									measurements were taken that meet the specifications for effective draft temperature and air velocity.													Airflow Rate Range	Number	Cubic	Liter/Minute		Air flowrate range within which the air terminal is designed to operate.						Feet/Minute							Air Flowrate Versus Flow Control Element	Number	Cubic	Liter/Minute		Air flowrate versus flow control element position at nominal pressure drop.						Feet/Minute							Core Set Horizontal	Number	Degrees F	Degrees C		Degree of horizontal (in the X-axis of the Local Placement) blade set from the centerline.				Core Set Vertical	Number	Degrees F	Degrees C		Degree of vertical (in the Y-axis of the Local Placement) blade set from the centerline.				Core Type	Text			Parallel, Perpendicular,	Identifies the way the core of the Air Terminal is constructed. Discharge direction of the air terminal.				Discharge Direction	Text			Adjustable	Parallel: discharges parallel to mounting surface designed so that flow attaches to the surface.								Aujustubie	Perpendicular: discharges away from mounting surface.									Adjustable: both parallel and perpendicular discharge.				Effective Area	Number	Square Ft	Square Cm		Effective discharge area of the air terminal.				Face Type	Text				Identifies how the terminal face of an Air Terminal is constructed.			_	**	1				The finish color for the air terminal.				Finish Color	Text								Finish Color Finish Type	Text Text				The type of finish for the air terminal.					_				The type of finish for the air terminal. Type of flow control element that may be included as a part of the construction of the air terminal.				Flow Control Type Flow Pattern	Text Text Text				Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern.				Finish Type Flow Control Type Flow Pattern Has Integral Control	Text Text Text Logical			True or False	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator	Text Text Text Logical Logical			True or False	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air terminal has sound attenuation.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator Has Thermal Insulation	Text Text Text Logical Logical Logical			True or False True or False	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air terminal has sound attenuation. If TRUE, the air terminal has thermal insulation.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator Has Thermal Insulation Mounting Type	Text Text Text Logical Logical Logical Text			True or False	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air terminal has sound attenuation. If TRUE, the air terminal has thermal insulation. The way the air terminal is mounted to the ceiling, wall, etc.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator Has Thermal Insulation Mounting Type Neck Area	Text Text Text Logical Logical Logical Text Number	Square Inch	Square mm	True or False True or False Surface, Flat flush, Lay-in	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air terminal has sound attenuation. If TRUE, the air terminal has thermal insulation. The way the air terminal is mounted to the ceiling, wall, etc. Neck area of the air terminal.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator Has Thermal Insulation Mounting Type Neck Area Number Of Slots	Text Text Text Logical Logical Logical Text Number Number	Square Inch None	Square mm	True or False True or False	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
terminal has sound attenuation. If TRUE, the air terminal has thermal insulation. The way the air terminal is mounted to the ceiling, wall, etc. Neck area of the air terminal. Number of slots.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator Has Thermal Insulation Mounting Type Neck Area	Text Text Text Logical Logical Logical Text Number		Square mm	True or False True or False Surface, Flat flush, Lay-in	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air terminal has sound attenuation. If TRUE, the air terminal has thermal insulation. The way the air terminal is mounted to the ceiling, wall, etc. Neck area of the air terminal.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator Has Thermal Insulation Mounting Type Neck Area Number Of Slots Shape	Text Text Text Logical Logical Logical Text Number Number Text	None	·	True or False True or False Surface, Flat flush, Lay-in	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air terminal has sound attenuation. If TRUE, the air terminal has thermal insulation. The way the air terminal is mounted to the ceiling, wall, etc. Neck area of the air terminal. Number of slots. Shape of the air terminal. Slot is typically a long narrow supply device with an aspect ratio generally greater than 10 to 1.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator Has Thermal Insulation Mounting Type Neck Area Number Of Slots Shape Slot Length	Text Text Text Logical Logical Logical Text Number Number Text	None Inch	mm	True or False True or False Surface, Flat flush, Lay-in	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air terminal has sound attenuation. If TRUE, the air terminal has thermal insulation. The way the air terminal is mounted to the ceiling, wall, etc. Neck area of the air terminal. Number of slots. Shape of the air terminal. Slot is typically a long narrow supply device with an aspect ratio generally greater than 10 to 1. Slot length.				Finish Type Flow Control Type Flow Pattern Has Integral Control Has Sound Attenuator Has Thermal Insulation Mounting Type Neck Area Number Of Slots Shape	Text Text Text Logical Logical Logical Text Number Number Text	None	·	True or False True or False Surface, Flat flush, Lay-in	Type of flow control element that may be included as a part of the construction of the air terminal. Flow pattern. If TRUE, a self powered temperature control is included in the Air Terminal. If TRUE, the air terminal has sound attenuation. If TRUE, the air terminal has thermal insulation. The way the air terminal is mounted to the ceiling, wall, etc. Neck area of the air terminal. Number of slots. Shape of the air terminal. Slot is typically a long narrow supply device with an aspect ratio generally greater than 10 to 1.				Throw Length	Number	Inch	mm		The horizontal or vertical axial distance an airstream travels after leaving an Air Terminal before the maximum stream velocity is reduced to a specified terminal velocity under isothermal conditions at the upper value of the Air Flow rate Range.			------	-----------------------------------	---------	----------------------	--------------	---------------	--	------------------			Air Flow Rate	Number	Cubic Feet/Minute	Liter/Minute		Volumetric flow rate.				Centerline Air Velocity	Number	Feet/Minute	Cm/Minute		Centerline air velocity versus distance from the diffuser and temperature differential				Induction Ratio	Number	None			Induction ratio versus distance from the diffuser and its discharge direction; induction ratio (or entrainment ratio) is the				Neck Air Velocity	Number	Feet/Minute	Cm/Minute		Air velocity at the neck.				Pressure Drop	Number	Inches of Water	mm of Water		Drop in total pressure between inlet and outlet at nominal air-flow rate.				Supply Air Temperature Cooling	Number	Degrees F	Degrees C		Supply air temperature in cooling mode.				Supply Air Temperature Heating	Number	Degrees F	Degrees C		Supply air temperature in heating mode.				Air Flow Rate	Number	Cubic Feet/Minute	Liter/Minute		The actual airflow rate as designed.				Airflow Type	Text				Enumeration defining the functional type of air flow through the terminal.				Location	Text				Location (a single type of diffuser can be used for multiple locations); high means close to ceiling.			Air	o Air Heat Exchanger					An air-to-air heat recovery device employs a counter-flow heat exchanger between inbound and outbound air flow.	IfcHeatExchanger			Heat Exchanger Type	Text				The property enumeration defines the types of heat exchanger that may be specified within the property set.				Has Defrost	Logical			True or False	The heat exchanger has defrost function or not.				Heat Transfer Type	Text				Type of heat transfer between the two air streams.				Operational Temperature Range	Number	Degrees F	Degrees C		Allowable operation ambient air temperature range.				Primary Airflow Rate Range	Number	Cubic	Liter/Minute		possible range of primary airflow that can be delivered						Feet/Minute							Secondary Airflow Rate Range	Number	Cubic Feet/Minute	Liter/Minute		possible range of secondary airflow that can be delivered.				Air Pressure Drop Curves	Number	PSI	Pa		Air pressure drop as function of air flow rate.				Defrost Temperature Effectiveness	Number	Degrees F	Degrees C		Temperature heat transfer effectiveness when defrosting is active.				Humidity Effectiveness	Number	None			Humidity heat transfer effectiveness: The ratio of primary airflow absolute humidity changes to maximum possible absolute humidity changes.				Latent Heat Transfer Rate	Number	BTU/Ft2.∘F			Latent heat transfer rate.				Sensible Effectiveness	Number	None			Sensible heat transfer effectiveness, where effectiveness is defined as the ratio of heat transfer to maximum possible heat transfer.				Sensible Effectiveness Table	Number	None			Sensible heat transfer effectiveness curve as a function of the primary and secondary air flow rate.				Sensible Heat Transfer Rate	Number	BTU/Ft2.∘F			Sensible heat transfer rate.				Temperature Effectiveness	Number	None			Temperature heat transfer effectiveness: The ratio of primary airflow temperature changes to maximum possible temperature changes.				Total Effectiveness	Number	None			Total heat transfer effectiveness: The ratio of heat transfer to the maximum possible heat transfer.				Total Effectiveness Table	Number	None			Total heat transfer effectiveness curve as a function of the primary and secondary air flow rate.				Total Heat Transfer Rate	Number	BTU/Ft2·∘F			Total heat transfer rate.			Boil	er					A boiler is a closed, pressure-rated vessel in which water or other fluid is heated using an energy source such as natural gas, heating oil, or electricity. The fluid in the vessel is then circulated out of the boiler for use in various processes or heating applications.	IfcBoiler			Boiler Type	Text				The property enumeration defines the types of boiler that may be																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
specified within the property set.				Energy Source	Text				Enumeration defining the energy source or fuel combusted to generate heat.				Heat Transfer Surface Area	Number	Square Ft	Square Cm		Total heat transfer area of the vessel.				Is Water Storage Heater	Logical			True or False	This is used to identify if the boiler has storage capacity (TRUE). If FALSE, then there is no storage capacity built into the boiler, such as an instantaneous hot water heater.				Nominal Energy Consumption	Number	BTU			Nominal fuel consumption rate required to produce the total boiler heat output.				Nominal Part Load Ratio	Number	None			Allowable part load ratio range.				Operating Mode	Text				Identifies the operating mode of the boiler.				Outlet Temperature Range	Number	Degrees F	Degrees C		Allowable outlet temperature of either the water or the steam.				Partial Load Efficiency Curves	Number	Percent			Boiler efficiency as a function of the partial load factor; E = f (partial Load factor).				Pressure Rating	Number	PSI	Pa		Nominal pressure rating of the boiler as rated by the agency having jurisdiction.				Water Inlet Temperature Range	Number	Degrees F	Degrees C		Allowable water inlet temperature range.				Water Storage Capacity	Number	Gallons/Liters			Water storage capacity.				Auxiliary Energy Consumption	Text	_			Boiler secondary energy source consumption pumps).				Combustion Efficiency	Number	Percent	D		Combustion efficiency under nominal condition.				Combustion Temperature	Number	Degrees F	Degrees C		Average combustion chamber temperature.				Energy Source Consumption	Number	BTU/Hr			Energy consumption.				Load Real	Number	BTU			Boiler real load. Operational officiency, bailer output divided by total operational officiency, bailer output divided by total operational officiency.				Operational Efficiency	Number	Percent			Operational efficiency: boiler output divided by total energy input (electrical and fuel).				Part Load Ratio	Number	None			Ratio of the real to the nominal capacity. Reilar primary operation (i.e., the final capacity of the thorough the thorough the thorough the final capacity of capacit				Primary Energy Consumption	Number	BTU/Hr	_		Boiler primary energy source consumption (i.e., the fuel consumed for changing the thermodynamic state of the fluid).				Working Pressure	Number	PSI	Pa		Boiler working pressure.				Steam Boiler	Text				Steam boiler type Specific Baseline Attributes.				Heat Output	Number	BTU/Hr			Total nominal heat output as listed by the Boiler manufacturer. For steam boilers, it is a function of inlet temperature			------	-------------------------------------	------------------	--------------------	-----------------	--------------------------------	---	---------------			Maximum Outlet Pressure	Number	PSI	Pa		versus steam pressure. Maximum steam outlet pressure.				Nominal Efficiency	Number	Percent	Pd		The nominal efficiency of the boiler as defined by the manufacturer. For steam boilers, a function of inlet temperature				Nominal Efficiency	Number	reitent			versus steam pressure.				Water Boiler	Text				Water boiler type Specific Baseline Attributes.				Heat Output	Number	BTU/Hr			Total nominal heat output as listed by the Boiler manufacturer. For water boilers, it is a function of inlet versus outlet				·		,			temperature. For steam boilers, it is a function of inlet temperature versus steam pressure				Nominal Efficiency	Number	Percent			The nominal efficiency of the boiler as defined by the manufacturer. For water boilers, a function of inlet versus outlet									temperature.			Chil	er					A chiller is a device used to remove heat from a liquid via a vapor-compression or absorption refrigeration cycle to cool a	lfcChiller								fluid, typically water or a mixture of water and glycol. The chilled fluid is then used to cool and dehumidify air in a				Chiller Type	Text				building. The property enumeration defines the types of chiller that may be specified within the property set.				Capacity Curve	Number	None			Chiller cooling capacity is a function of condensing temperature and evaporating temperature.				Coefficient Of Performance Curve	Number	None			Chiller coefficient of performance (COP) is function of condensing temperature and evaporating temperature.				escentistical of refrontiance early	rumber	None			omiter coefficient of performance (cor / 13 function of condensing temperature and evaporating temperature.				Full Load Ratio Curve	Number	None			Ratio of actual power to full load power as a quadratic function of part load				Nominal Capacity	Number	Ton			Nominal cooling capacity of chiller at standardized conditions as defined by the agency having jurisdiction.				Nominal Condensing Temperature	Number	Degrees F	Degrees C		Chiller condensing temperature.				Nominal Efficiency	Number	Percent			Nominal chiller efficiency under nominal conditions.				Nominal Evaporating Temperature	Number	Degrees F	Degrees C		Chiller evaporating temperature.				Nominal Heat Rejection Rate	Number	BTU/Hr			Sum of the refrigeration effect and the heat equivalent of the power input to the compressor.				Nominal Power Consumption	Number	Horsepower			Nominal total power consumption.				Capacity	Number	Ton			The product of the ideal capacity and the overall volumetric efficiency of the compressor.				Coefficient Of Performance	Number	None			The Coefficient of performance (COP) is the ratio of heat removed to energy input.				Energy Efficiency Ratio	Number	BTU/Hr/Watt			The Energy efficiency ratio (EER) is the ratio of net cooling capacity to the total input rate of electric power applied			Coil						A coil is a device used to provide heat transfer between non-mixing media.	(f. C. II			Coil Type	Toyt					IfcCoil			Coil Type Airflow Rate Range	Text Number	Cubic	Liter/Minute		The property enumeration defines the types of coil that may be specified within the property set. Possible range of airflow that can be delivered.				All flow Rate Rafige	Number	Feet/Minute	Liter/ivilliute	airflow across the coil (e.g.	Possible range of an flow that can be delivered.				Nominal Latent Capacity	Number	BTU			Nominal latent capacity.				Nominal Sensible Capacity	Number	BTU			Nominal sensible capacity.				Nominal U A	Number	None			Nominal UA value.				Operational Temperature Range	Number	Degrees F	Degrees C		Allowable operational air temperature range.				Placement Type	Text			Floor, Ceiling, Unit	Indicates the placement of the coil				Air Pressure Drop Curve	Number	PSI	Pa		Air pressure drop curve, pressure drop – flow rate curve				Atmospheric Pressure	Number	PSI	Pa		Ambient atmospheric pressure.				Face Velocity	Number	Feet/Minute			Air velocity through the coil.				Sound Curve	Number	Decibel			Regenerated sound versus air-flow rate.				Sound Attenuation	Logical				TRUE if the coil has sound attenuation, FALSE if it does not.				Water Coil	Text				Hydronic coil type attributes.				Bypass Factor	Number	None			Fraction of air that is bypassed by the coil .				Coil Connection Direction	Text				Coil connection direction (facing into the air stream).				Coil Coolant Coil Face Area	Text Number	Inch	mm		The fluid used for heating or cooling used by the hydronic coil. Coil face area in the direction against air the flow.				Coil Fluid Arrangement	Text	IIICII	111111		Fluid flow arrangement of the coil				con Frank Arrangement	TCAL			Crossflow, Cross Parallel Flow														Fluid	Text				The properties of the hydronic fluid used for heat transfer within the coil tubes.				Fluid Pressure Range	Number	PSI	Pa		Allowable water working pressure range inside the tube.				Heat Exchange Surface Area	Number	Square Ft	Square Cm		Heat exchange surface area associated with U-value.				Primary Surface Area	Number	Square Ft	Square Cm		Primary heat transfer surface area of the tubes and headers.				Secondary Surface Area	Number	Square Ft	Square Cm		Secondary heat transfer surface area created by fins.				Sensible Heat Ratio	Number	None			Air-side sensible heat ratio, or fraction of sensible heat transfer to the total heat transfer.				Total U A Curves	Number	None			Total UA curves, UA - air and water velocities				Water Pressure Drop Curve	Number	PSI	Pa		Water pressure drop curve, pressure drop – flow rate curve				Wet Coil Fraction	Number	None			Fraction of coil surface area that is wet (0-1).				npressor					A compressor is a device that compresses a fluid typically used in a refrigeration circuit.	IfcCompressor			Compressor Type	Text	DD: 4			The property enumeration defines the types of compressor that may be specified within the property set.				Compressor Speed	Number	RPM			Compressor speed.				Has Hot Gas Bypass	Logical	Tonnos			Whether or not hot gas bypass is provided for the compressor				deal Capacity	Number	Tonnage			Compressor capacity under																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
ideal conditions.				doal Shaft Dower	Number	Horsono			Compressor shaft nower under ideal conditions				deal Shaft Power Impeller Diameter	Number Number	Horsepower Inch	mm		Compressor shaft power under ideal conditions. Diameter of compressor impeller - used to scale performance of geometrically similar compressors.				Maximum Part Load Ratio	Number	None			Maximum part load ratio as a fraction of nominal capacity.			------	--	---------	---------------------------	------------	-------------------------------	--	---------------			Minimum Part Load Ratio	Number	None			Minimum part load ratio as a fraction of nominal capacity.				Nominal Capacity	Number	Tonnage			Compressor nameplate capacity.				Power Source	Text				Type of power driving the compressor.				Refrigerant Class	Text			CFC, HCFC, HFC	Refrigerant class used by the compressor.				Refrigerant Type	Text				Refrigerant material.				Coefficient Of Performance	Number	None			Coefficient of performance (COP).				Compression Efficiency	Number	Percent			Ratio of the work required for isentropic compression of the gas to the work delivered to the gas within the compression						_			volume				Compressor Capacity	Number	Tonnage			The product of the ideal capacity and the overall volumetric efficiency of the compressor.				Compressor Total Efficiency	Number	Percent			Ratio of the thermal cooling capacity to electrical input.				Compressor Total Heat Gain	Number	BTU/Hr			Compressor total heat gain.				Energy Efficiency Ratio	Number	None			Energy efficiency ratio (EER).				Friction Heat Gain	Number	BTU/Hr			Friction heat gain.				Full Load Ratio	Number	None			Ratio of actual power to full load power as a quadratic function of part load, at certain condensing and evaporating temperature				Input Power	Number	НР			Input power to the compressor motor.				Isentropic Efficiency	Number	Percent			Ratio of the work required for isentropic compression of the gas to work input to the compressor shaft.				Lubricant Pump Heat Gain	Number	BTU/Hr			Lubricant pump heat gain.				Mechanical Efficiency	Number	Percent			Ratio of the work (as measured) delivered to the gas to the work input to the compressor shaft.				Shaft Power	Number	НР			The actual shaft power input to the compressor.				Volumetric Efficiency	Number	Percent			Ratio of the actual volume of gas entering the compressor to the theoretical displacement of the compressor.				<u> </u>								Con	denser					A condenser is a device that is used to dissipate heat, typically by condensing a substance such as a refrigerant from its gaseous to its liquid state.	IfcCondenser			Condenser Type	Text				The property enumeration defines the types of condenser that may be specified within the property set.				External Surface Area	Number	Square Ft	Square Cm		External surface area (both primary and secondary area).				Internal Refrigerant Volume	Number	Square Ft	Square Cm		Internal volume of condenser (refrigerant side).				Internal Surface Area	Number	Square Ft	Square Cm		Internal surface area.				Internal Water Volume	Number	Gallons/Liters	Square em		Internal volume of condenser (water side).				Nominal Heat Transfer Area	Number	Square Ft	Square Cm		Nominal heat transfer surface area associated with nominal overall heat transfer coefficient.				Nominal Heat Transfer Coefficient	Number	None	5444.5 5		Nominal overall heat transfer coefficient associated with nominal heat transfer area.				Refrigerant Class	Text			CFC, HCFC, HFC	Refrigerant class used by the condenser.				Refrigerant Material	Text				The refrigerant material used for heat transfer purposes.				Compressor Condenser Heat Gain	Number	BTU			Heat gain between condenser inlet to compressor outlet.				Compressor Condenser Pressure Drop	Number	PSI	Pa		Pressure drop between condenser inlet and compressor outlet.				Condenser Mean Void Fraction	Number	None			Mean void fraction in condenser.				Condensing Temperature	Number	Degrees F	Degrees C		Refrigerant condensing temperature.				Exterior Heat Transfer Coefficient	Number	None			Exterior heat transfer coefficient associated with exterior surface area.				Heat Rejection Rate	Number	BTU/Hr			Sum of the refrigeration effect and the heat equivalent of the power input to the compressor.				Interior Heat Transfer Coefficient	Number	None			Interior heat transfer coefficient associated with interior surface area.				Logarithmic Mean Temperature Difference	Number	Degrees F	Degrees C		Logarithmic mean temperature difference between refrigerant and water or air.				Refrigerant Fouling Resistance	Number	None			Fouling resistance on the refrigerant side.				U A curves	Number	None			UV = f (VExterior, VInterior), UV as a function of interior and exterior fluid flow velocity at the entrance.				Water Fouling Resistance	Number	Hr x Ft2 °F/BTU			Fouling resistance on water/air side.			Chil	led Beam					A cooled beam (or chilled beam) is a device typically used to cool air by circulating a fluid such as chilled water through exposed finned tubes above a space	IfcCooledBeam			Chilled Beam Type	Text			Active, Passive, User Defined	The property enumeration defines the types of chilled beam that may be specified within the property set.								,					Coil Length	Number	Inch	mm		Length of coil.				Coil Width	Number	Inch	mm		Width of coil.				Finish Color	Text				Finish color for cooled beam.				Integrated Lighting Type	Text				Integrated lighting in cooled beam.				Is Free Hanging	Logical			True or False	Is it free hanging type (not mounted in a false ceiling)?				Nominal Cooling Capacity	Number	Feet/Minute	Cm/Minute		Nominal cooling capacity.				Nominal Heating Capacity	Number	BTU per Lineal Feet/Cm			Nominal heating capacity.				Nominal Return Water Temperature Cooling	Number	Degrees F	Degrees C		Nominal return water temperature (refers to nominal cooling capacity).				Nominal Return Water Temperature Heating	Number	Degrees F	Degrees C		Nominal return water temperature (refers to nominal heating capacity).				Nominal Supply Water Temperature Cooling	Number	Degrees F	Degrees C		Nominal supply water temperature (refers to nominal cooling capacity).				Nominal Supply Water Temperature Heating	Number	Degrees F	Degrees C		Nominal supply water temperature (refers to nominal heating capacity).				Nominal Surrounding Humidity Cooling	Number	Percent	<u> </u>		Nominal surrounding humidity (refers to nominal cooling capacity).				Nominal Surrounding Temperature Cooling	Number	Degrees F	Degrees C		Nominal surrounding temperature (refers to nominal cooling capacity).				Nominal Surrounding Temperature Heating	Number	Degrees F	Degrees C		Nominal surrounding temperature (refers to nominal heating capacity).				Nominal Water Flow Cooling	Number	Gallons/Min	Liters/Min		Nominal water flow (refers to nominal cooling capacity).						ı I		•	•					0 11 /011	/					--	----------	------------------	---------------	--	--	-----------------		Nominal Water Flow Heating	Number	Gallons/Min	Liters/Min		Nominal water flow (refers to nominal heating capacity).			Pipe Connection	Text				The manner in which the pipe connection is made to the cooled beam.			Water Flow Control System Type	Text				Factory fitted water flow control system.			Active Chilled Beam Configuration	Text				Active (ventilated) cooled beam			Air Flow Configuration	Text	CENA/Lineal Foot			Air flow configuration type of cooled beam.			Air Flow Rate	Number	CFM/Lineal Feet			Air flow rate.			Air Pressure Drop Curves	Number	Inch/mm of Water			Air pressure drop as function of air flow rate.			Airflow Rate Range	Number	CFM/Lineal Feet			Possible range of airflow that can be delivered.			Beam Cooling Capacity	Number	BTU/Lineal Feet			Cooling capacity of beam. This excludes cooling capacity of supply air.			Beam Heating Capacity	Number	BTU/Lineal Feet			Heating capacity of beam. This excludes heating capacity of supply air.			Connection Size	Number	Inch	mm		Duct connection diameter.			Cooling Water Flow Rate	Number	Gallons/Min	Liters/Min		Water flow rate for cooling.			Correction Factor For Cooling	Number	None			Correction factor k as a function of water flow rate (used to calculate cooling capacity).			Correction Factor For Heating	Number	None			Correction factor k as a function of water flow rate (used to calculate heating capacity).			Heating Water Flow Rate	Number	Gallons/Min	Liters/Min		Water flow rate for heating.			Return Water Temperature Cooling	Number	Degrees F	Degrees C																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
	Return water temperature in cooling mode.			Return Water Temperature Heating	Number	Degrees F	Degrees C		Return water temperature in heating mode.			Supply Air Connection Type	Text				The manner in which the pipe connection is made to the cooled beam.			Supply Water Temperature Cooling	Number	Degrees F	Degrees C		Supply water temperature in cooling mode.			Supply Water Temperature Heating	Number	Degrees F	Degrees C		Supply water temperature in heating mode.			Throw	Number	Inch	mm		Distance cooled beam throws the air.			Total Cooling Capacity	Number	BTU/Lineal Feet			Total cooling capacity. This includes cooling capacity of beam and cooling capacity of supply air.			Total Heating Capacity	Number	BTU/Lineal Feet			Total heating capacity. This includes heating capacity of beam and heating capacity of supply air.			Water Pressure Drop Curves	Number	Inches of Water	mm of Water		Water pressure drop as function of water flow rate.			Cooling Tower					A cooling tower is a device which rejects heat to ambient air by circulating a fluid such as water through it to reduce its	IfcCoolingTower							temperature by partial evaporation.			Circuit Type	Text			· ·	Open Circuit: Exposes water directly to the cooling atmosphere.							Wet, Dry, Dry Wet, User	Close Circuit: The fluid is separated from the atmosphere by a heat exchanger.							Defined	Wet: The air stream or the heat exchange surface is evaporatively cooled.								Dry: No evaporation into the air stream.			Anabiant Darian Day Bulls Tanananatura	Niconala	D	D		Dry Wet: A combination of a dry tower and a wet tower.			Ambient Design Dry Bulb Temperature	Number	Degrees F	Degrees C		Ambient design dry bulb temperature used for selecting the cooling tower.			Ambient Design Wet Bulb Temperature	Number	Degrees F	Degrees C		Ambient design wet bulb temperature used for selecting the cooling tower.			Basin Reserve Volume	Number	Gallons/Liters		For Cycling Two Speed For	Volume between operating and overflow levels in cooling tower basin.			Capacity Control	Text			Fan Cycling, Two Speed Fan, Variable Speed Fan,	Fan Cycling: Fan is cycled on and off to control duty. Two Speed Fan: Fan is switched between low and high speed to control duty.							Dampers Control,	Variable Speed Fan: Fan speed is varied to control duty.							Bypass Valve Control,	Dampers Control: Dampers modulate the air flow to control duty.							Multiple Series Pumps,	Bypass Valve Control: Bypass valve modulates the water flow to control duty.							Two Speed Pump,	Multiple Series Pumps: Turn on/off multiple series pump to control duty.							Variable Speed Pump, User	Two Speed Pump: Switch between high/low pump speed to control duty.								Variable Speed Pump: vary pump speed to control duty.											Control Strategy	Text			Fixed Exiting Water Temp,	Fixed Exiting Water Temp: The capacity is controlled to maintain a fixed exiting water temperature.							Wet Bulb Temp Reset	Wet Bulb Temp Reset: The set-point is reset based on the wet-bulb temperature.			Flow Arrangement	Text			Counter Flow, Crossflow,	Counter Flow: Air and water flow enter in different directions.							Pparallel Flow, User Defined	Crossflow: Air and water flow are perpendicular.								Parallel Flow: air and water flow enter in same directions.			Lift Elevation Difference	Number	Inch	mm		Elevation difference between cooling tower sump and the top of the tower.			Nominal Capacity	Number	Tonnage			Nominal cooling tower capacity in terms of heat transfer rate of the cooling tower between air stream and water stream at								nominal conditions.			Number Of Cells	Number	None			Number of cells in one cooling tower unit.			Operation Temperature Range	Number	Degrees F	Degrees C	C 5:11 1 C 1 1 =	Allowable operation ambient air temperature range.			Spray Type	Text			Spray Filled, Splash Type Fill,	water Spray Fill Type							Film Type Fill, User Defined				Water Requirement	Number	Gallons/Min	Liters/Min		Make-up water requirements.			·		Tonnage	LITEIS/IVIIII		Cooling tower capacity in terms of heat transfer rate of the cooling tower between air stream and water stream.			Capacity	Number	ronnage			cooming tower capacity in terms of near transfer rate of the cooming tower between all stream and water stream.			Heat Transfer Coefficient	Number	None			Heat transfer coefficient-area product.			Sump Heater Power	Number	Watts			Electrical heat power of sump heater.			U A Curve	Number	None			UA value as a function of fan speed at certain water flow rate, UA = f (fan speed).			U A Cui ve	Number							Water Delta	Number	Degrees F	Degrees C					Water Delta Damper	Number	Degrees F	Degrees C		Water temperature change as a function of wet-bulb temperature, water entering temperature, water flow rate, air flow A damper typically participates in an HVAC duct distribution system and is used to control or modulate the flow of air.	IfcDamper		Water Delta Damper	Number	Degrees F	Degrees C			IfcDamper			Damper Type	Text			Manual, Control, Fire, Fire	The property enumeration defines the types of damper that may be specified within the property set.				-----	----------------------------	----------	------------------	----------------	-----------------------------	---	-----------------	----							Smoke, Smoke, User Defined																Blade Action	Text				Blade action.					Blade Edge	Text				Blade edge.					Blade Material	Text				The material from which the damper blades are constructed.					Blade Shape	Text				Blade shape. Flat means triple V-groove.					Blade Thickness		Inch	mm								Number	Inch	mm		The thickness of the damper blade.					Close Off Rating	Text				Close off rating.					Face Area	Number	Inch	mm		Face area open to the airstream.					Frame Depth	Number	Inch/mm			The length (or depth) of the damper frame.					Frame Material	Text				The material from which the damper frame is constructed.					Frame Thickness	Number	Inch/mm			The thickness of the damper frame material.					Frame Type	Text			Standard, Single Flange,	The type of frame used by the damper									Single Reversed Flange,										Double Flange, User Defined																Leakage Curve	Number	None			Leakage versus pressure drop; Leakage = f (pressure).					Leakage Fully Closed	Number	CFM per Ft2/L			Leakage when fully closed.					Loss Coefficient Curve	Number	None			Loss coefficient – blade position angle curve; ratio of pressure drop to velocity pressure versus blade angle; C = f (blade					2003 Cochicient Curve	Nullibel	NOTIC			angle position).					Maximum Air Flow Rate	Number	Cubic	Liter/Minute		Maximum allowable air flow rate.		+			IVIANITIUIII AII FIOW NALE	number		Liter/iviinute		INIAXIIIUIII AIIOWADIE AII TIOW TALE.					Mayinayna Warking Deserves	No	Feet/Minute	D-		Manipular working processes					Maximum Working Pressure	Number	PSI	Pa		Maximum working pressure.					Nominal Air Flow Rate	Number	Cubic	Liter/Minute		Nominal air flow rate.							Feet/Minute								Number of Blades	Number	None		1,2,3	Number of blades.					Open Pressure Drop	Number	Inches of Water	mm of Water		Total pressure drop across damper.					Operation	Text				The operational mechanism for the damper operation.					Orientation	Text				The intended orientation for the damper as specified by the manufacturer.					Regenerated Sound Curve	Number	Dba			Regenerated sound versus air flow rate.					Seal Material	Text				The material from which the damper seals are constructed.					Temperature Range	Number	Degrees F	Degrees C		Temperature range.						Text	Degrees	Degrees C		Identifies whether the damper is sized nominally or with exact measurements:					Sizing Method	Text				·										NOMINAL: Nominal sizing method.										EXACT: Exact sizing method.					Air Flow Rate	Number	Cubic	Liter/Minute		Air flow rate.							Feet/Minute								Blade Position Angle	Number	Degrees			Blade position angle; angle between the blade and flow direction (0 - 90).					Damper Position	Number	None			Damper position (0-1); damper position (0=closed=90deg position angle, 1=open=0deg position angle.					Leakage	Number	CFM per Ft2/L			Air leakage rate.					Pressure Drop	Number	Inches of Water	mm of Water		Pressure drop.					Pressure Loss Coefficient	Number	None			Pressure loss coefficient.					Control Damper					Control damper type attributes.					Control Damper Operation	Text				The inherent characteristic of the control damper operation.					Torque Range	Number	Inch-Lbs/Nm			Torque range: minimum operational torque to maximum allowable torque.					Fire Damper	Hamber	111011 203/14111			Fire damper type attributes.						Toyt				· · · ·		+			Actuation Type	Text	1			Enumeration that																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
identifies the different types of dampers.		+			Enclosure Rating	Text	1			Enumeration that identifies the closure rating for the damper.					Fire Resistance Rating	Text	<u> </u>			Measure of the fire resistance rating in hours (e.g., 1.5 hours, 2 hours, etc.).					Fusible Link Temperature	Text				The temperature that the fusible link melts.					Fire Smoke Damper					Combination Fire and Smoke damper type attributes.					Actuation Type	Text				Enumeration that identifies the different types of dampers.					Enclosure Rating	Text				Enumeration that identifies the closure rating for the damper.					Control Type	Text				The type of control used to operate the damper (e.g., Open/Closed Indicator, Resettable Temperature Sensor,										Temperature Override, etc.).					Fire Resistance Rating	Text				Measure of the fire resistance rating in hours (e.g., 1.5 hours, 2 hours, etc.).					Fusible Link Temperature	Number	Degrees F	Degrees C		The temperature that the fusible link melts.		+				Hamber	Degrees	Degrees							Smoke Damper	T2				Smoke damper type attributes. The type of control yield to greate the damper (e.g., Oney/Closed Indicator, Decettable Temperature Sensor					Control Type	Text				The type of control used to operate the damper (e.g., Open/Closed Indicator, Resettable Temperature Sensor,					LOUI.					Temperature Override, etc.) .	If D. IST			Duc	t Silencer					A duct silencer is a device that is typically installed inside a duct distribution system for the purpose of reducing the	IfcDuctSilencer									noise levels from air movement, fan noise, etc. in the adjacent space or downstream of the duct silencer device.															Silencer Type	Text				The property enumeration defines the types of silencer that may be specified within the property set.					Airflow Rate Range	Number	Feet/Minute			Possible range of airflow that can be delivered.												**			Has Exterior Insulation	Logical			True or False	TRUE if the silencer has exterior insulation. FALSE if it does not.			-----	--	--	---	-------------------------------------	-----------------------------------	--	----------------------			Hydraulic Diameter	Number	Inch	mm		Hydraulic diameter.				Length	Number	Inch	mm		The finished length of the silencer.				Temperature Range	Number	Degrees F	Degrees C		Allowable minimum and maximum temperature.				Weight	Number	Lbs/Kg	<u> </u>		The weight of the silencer.				Working Pressure Range	Number	PSI	Pa		Allowable minimum and maximum working pressure (relative to ambient pressure).				Air Flow Rate	Number	Cubic	Liter/Minute		Volumetric air flow rate.				Air Pressure Drop Curve	Number	Feet/Minute Inch/mm of Water			Air pressure drop as a function of air flow rate.						,						Eng	ine					An engine is a device that converts fuel into mechanical energy through combustion.	IfcEngine			Engine Type	Text				The property enumeration defines the types of engine that may be specified within the property set.				Energy Source	Text				The source of energy.				porative Cooler					An evaporative cooler is a device that cools air by saturating it with water vapor.	IfcEvaporativeCooler			Cooler Type	Text				The property enumeration defines the types of evaporative cooler that may be specified within the property set.				Air Pressure Drop Curve	Number	Inch/mm of Water/CFM			Air pressure drop as function of air flow rate.				Effectiveness Table	Number	None			Total heat transfer effectiveness curve as a function of the primary air flow rate.				Flow Arrangement	Text				Counter Flow: Air and water flow enter in different directions.									Crossflow: Air and water flow are perpendicular.									Parallel Flow: Air and water flow enter in same directions.				Heat Exchange Area	Number	Square Ft	Square Cm		Heat exchange area.				Operation Temperature Range	Number	Degrees F	Degrees C		Allowable operation ambient air temperature range.				Water Press Drop Curve	Number	PSI	Pa		Water pressure drop as function of water flow rate.				Water Requirement	Number	Gallons/Liters			Make-up water requirement.				Effectiveness	Number	None			Ratio of the change in dry bulb temperature of the (primary) air stream to the difference between the entering dry bulb				Laborat Hast Torractor Date	Ni	DTI. (1)			temperature of the (primary) air and the wet-bulb temperature of the (secondary) air.				Latent Heat Transfer Rate	Number	BTU/Hr			Latent heat transfer rate to primary air flow.				Sensible Heat Transfer Rate	Number	BTU/Hr			Sensible heat transfer rate to primary air flow.				Total Heat Transfer Rate Water Sump Temperature	Number Number	BTU/Hr Degrees F	Degrees C		Total heat transfer rate to primary air flow. Water sump temperature.				porator	ivuilibei	Degrees F	Degrees C		An evaporator is a device in which a liquid refrigerant is vaporized and absorbs heat from the surrounding fluid.	IfcEvaporator								The state of s				Evaporator Type	Text				The property enumeration defines the types of evaporator that may be specified within the property set.				Francisco Contact					The fluid used for the coolant in the evaporator.				Evaporator Coolant	Text				·				Evaporator Coolant Evaporator Medium Type	Text Text				Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant.				Evaporator Medium Type	Text				Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant.				Evaporator Medium Type External Surface Area	Text Number	Square Ft	Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area).				Evaporator Medium Type	Text	Square Ft Ft3 per Lb/m3 per Kg	Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant.				Evaporator Medium Type External Surface Area	Text Number	Ft3 per Lb/m3 per	Square Cm Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
secondary area).				Evaporator Medium Type External Surface Area Internal Refrigerant Volume	Text Number Number	Ft3 per Lb/m3 per Kg	·		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side).				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area	Number Number Number	Ft3 per Lb/m3 per Kg Square Ft	·		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient	Number Number Number Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters	Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side).				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area	Number Number Number Number Number Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft	Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient	Number Number Number Number Number Number Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft	Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class	Number Number Number Number Number Number Text	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft	Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type	Number Number Number Number Number Number Text Text	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H·Ft2.oF)	Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain	Number Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H·Ft2.oF)	Square Cm Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction	Number Number Number Number Number Number Text Text Number Number Number Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H·Ft2.oF) BTU PSI Degrees F None	Square Cm Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient	Number Number Number Number Number Number Text Text Number Number Number Number Number Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H·Ft2.oF) BTU PSI Degrees F None None	Square Cm Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate	Number Number Number Number Number Number Text Text Number Number Number Number Number Number Number Number Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.oF) BTU PSI Degrees F None None BTU/Hr	Square Cm Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate Interior Heat Transfer Coefficient	Text Number Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.oF) BTU PSI Degrees F None None BTU/Hr None	Square Cm Square Cm Pa Degrees C		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor. Interior heat transfer coefficient associated with interior surface area.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate Interior Heat Transfer Coefficient Logarithmic Mean Temperature Difference	Text Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.oF) BTU PSI Degrees F None None BTU/Hr None Degrees F	Square Cm Square Cm		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor. Interior heat transfer coefficient associated with interior surface area. Logarithmic mean temperature difference between refrigerant and water or air.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate Interior Heat Transfer Coefficient Logarithmic Mean Temperature Difference Refrigerant Fouling Resistance	Text Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.oF) BTU PSI Degrees F None None BTU/Hr None	Square Cm Square Cm Pa Degrees C		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor. Interior heat transfer coefficient associated with interior surface area. Logarithmic mean temperature difference between refrigerant and water or air. Fouling resistance on the refrigerant side.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate Interior Heat Transfer Coefficient Logarithmic Mean Temperature Difference Refrigerant Fouling Resistance U A curves	Text Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.0F) BTU PSI Degrees F None None BTU/Hr None Degrees F Hr-Ft2°F/BTU	Square Cm Square Cm Pa Degrees C		Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor. Interior heat transfer coefficient associated with interior surface area. Logarithmic mean temperature difference between refrigerant and water or air. Fouling resistance on the refrigerant side. UV = f (VExterior, VInterior), UV as a function of interior and exterior fluid flow velocity at the entrance.				Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate Interior Heat Transfer Coefficient Logarithmic Mean Temperature Difference Refrigerant Fouling Resistance U A curves Water Fouling Resistance	Text Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.oF) BTU PSI Degrees F None None BTU/Hr None Degrees F	Square Cm Square Cm Pa Degrees C	0.00025	Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor. Interior heat transfer coefficient associated with interior surface area. Logarithmic mean temperature difference between refrigerant and water or air. Fouling resistance on the refrigerant side. UV = f (VExterior, VInterior), UV as a function of interior and exterior fluid flow velocity at the entrance. Fouling resistance on water/air side.	IfoCan			Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate Interior Heat Transfer Coefficient Logarithmic Mean Temperature Difference Refrigerant Fouling Resistance U A curves Water Fouling Resistance	Text Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.0F) BTU PSI Degrees F None None BTU/Hr None Degrees F Hr-Ft2°F/BTU	Square Cm Square Cm Pa Degrees C	0.00025	Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor. Interior heat transfer coefficient associated with interior surface area. Logarithmic mean temperature difference between refrigerant and water or air. Fouling resistance on the refrigerant side. UV = f (VExterior, VInterior), UV as a function of interior and exterior fluid flow velocity at the entrance. Fouling resistance on water/air side. A fan is a device which imparts mechanical work on a gas. A typical usage of a fan is to induce airflow in a building	IfcFan		Fan	Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate Interior Heat Transfer Coefficient Logarithmic Mean Temperature Difference Refrigerant Fouling Resistance U A curves Water Fouling Resistance	Text Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.0F) BTU PSI Degrees F None None BTU/Hr None Degrees F Hr-Ft2°F/BTU	Square Cm Square Cm Pa Degrees C	0.00025	Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor. Interior heat transfer coefficient associated with interior surface area. Logarithmic mean temperature difference between refrigerant and water or air. Fouling resistance on the refrigerant side. UV = f (VExterior, VInterior), UV as a function of interior and exterior fluid flow velocity at the entrance. Fouling resistance on water/air side. A fan is a device which imparts mechanical work on a gas. A typical usage of a fan is to induce airflow in a building services air distribution system	IfcFan		Fan	Evaporator Medium Type External Surface Area Internal Refrigerant Volume Internal Surface Area Internal Water Volume Nominal Heat Transfer Area Nominal Heat Transfer Coefficient Refrigerant Class Refrigerant Type Compressor Evaporator Heat Gain Compressor Evaporator Pressure Drop Evaporating Temperature Evaporator Mean Void Fraction Exterior Heat Transfer Coefficient Heat Rejection Rate Interior Heat Transfer Coefficient Logarithmic Mean Temperature Difference Refrigerant Fouling Resistance U A curves Water Fouling Resistance	Text Number Number Number Number Number Text Text Number	Ft3 per Lb/m3 per Kg Square Ft Gallons/Liters Square Ft BTU/(H-Ft2.0F) BTU PSI Degrees F None None BTU/Hr None Degrees F Hr-Ft2°F/BTU	Square Cm Square Cm Pa Degrees C	0.00025 Supply Air:, Return Air,	Cold Liquid: Evaporator is using liquid type of fluid to exchange heat with refrigerant. Cold Air: Evaporator is using air to exchange heat with refrigerant. External surface area (both primary and secondary area). Internal volume of evaporator (refrigerant side). Internal surface area. Internal volume of evaporator (water side). Nominal heat transfer surface area associated with nominal overall heat transfer coefficient. Nominal overall heat transfer coefficient associated with nominal heat transfer area. Refrigerant class used by the compressor. Refrigerant material. Heat gain between the evaporator outlet and the compressor inlet. Pressure drop between the evaporator outlet and the compressor inlet. Refrigerant evaporating temperature. Mean void fraction in evaporator. Exterior heat transfer coefficient associated with exterior surface area. Sum of the refrigeration effect and the heat equivalent of the power input to the compressor. Interior heat transfer coefficient associated with interior surface area. Logarithmic mean temperature difference between refrigerant and water or air. Fouling resistance on the refrigerant side. UV = f (VExterior, VInterior), UV as a function of interior and exterior fluid flow velocity at the entrance. Fouling resistance on water/air side. A fan is a device which imparts mechanical work on a gas. A typical usage of a fan is to induce airflow in a building	IfcFan						Г					------	---	----------------------------	-----------------------------	----------------	--	-----------	---			Capacity Control Type	Text			Inlet Vane: Control by adjusting inlet vane.									Variable Speed Drive: Control by variable speed drive.									Blade Pitch Angle: Control by adjusting blade pitch angle.									Two Speed: Control by switch between high and low speed.									Discharge Damper: Control by modulating discharge damper.					Coil Position	Text			Defines the relationship between a fan and a coil.					Discharge Pressure Loss	Number	Inches of Water	mm of Water	Fan discharge pressure loss associated with the discharge arrangement.					Discharge Type	Text			Defines the type of connection at the fan discharge.									Duct: Discharge into ductwork.									Screen: Discharge into screen outlet.									Louver: Discharge into a louver.									Damper: Discharge into a damper.					Discharge Velocity	Number	Feet/Minute		The speed at which air discharges from the fan through the fan housing discharge opening.							-							Drive Power Loss	Number	Horsepower		Fan drive power losses associated with the type of connection between the motor and the fan wheel.					Efficiency Curve	Number	Percent/CFM or		Fan efficiency =f (flow rate).							LM																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
Fan Efficiency	Number	Percent		Fan mechanical efficiency.					Fan Mounting Type	Text			Defines the method of mounting the fan in the building.					Fan Power Rate	Number	Horsepower		Fan power consumption.					Fan Rotation Speed	Number	RPM		Fan rotation speed.					Fraction Of Motor Heat To Air Stream	Number	BTU/Hr		Fraction of the motor heat released into the fluid flow.					Impeller Diameter	Number	Inch	mm	Diameter of fan wheel - used to scale performance of geometrically similar fans.					Motor Drive Type	Text			Motor drive type:						ICAL			DIRECT DRIVE: Direct drive.									BELT DRIVE: Belt drive.																		COUPLING: Coupling.									OTHER: Other type of motor drive.									UNKNOWN: Unknown motor drive type.					Motor Position	Text			Defines the location of the motor relative to the air stream.									In Airstream: Fan motor is in the air stream.									Out Of Air Stream: Fan motor is out of the air stream.					Nominal Air Flow Rate	Number	Cubic	Liter/Minute	Nominal air flow rate.							Feet/Minute							Nominal Power Rate	Number	Horsepower		Nominal fan power rate.					Nominal Rotation Speed	Number	RPM		Nominal fan wheel speed.					Nominal Static Pressure	Number	Inches of Water	mm of Water	The static pressure within the air stream					Nominal Total Pressure	Number	Inches of Water	mm of Water	Nominal total pressure rise across the fan.						Number								Operation Temperature Range		Degrees F	Degrees C	Allowable operation ambient air temperature range.					Operational Criteria	Number	Hours		Time of operation at maximum operational ambient air temperature.					Overall Efficiency	Number	Percent		Total efficiency of motor and fan.					Pressure Curve	Number	Inch/mm/CFM		Pressure rise = f (flow rate).					Shaft Power Rate	Number	Horsepower		Fan shaft power.					Wheel Tip Speed	Number	Feet/Minute		Fan blade tip speed, typically defined as the linear speed of the tip of the fan blade furthest from the shaft.					Centrifugal Fan				Centrifugal fan occurrence attributes attached to an instance of a fan.					Arrangement	Text			Defines the fan and motor drive arrangement as defined by AMCA.					Direction Of Rotation	Text			Clockwise, Counter Clockwise The direction of the centrifugal fan wheel rotation when viewed from the drive side of the fan.					Discharge Position	Text			Top Horizontal, Top Angular Centrifugal fan discharge position.				Filt					A filter is an apparatus used to remove particulate or gaseous matter from fluids and gases.	IfcFilter													Filter Type	Text			The property enumeration defines the types of filter that may be specified within the property set.					Final Resistance	Number	Inches of Water	mm of Water	Filter fluid resistance when replacement is required		-			Flow Rate Range	Number	Cubic	Liter/Minute	Possible range of fluid flowrate that can be delivered.					I IOM Vare valike	Number	Feet/Minute	Liter/Milliate	rossible range of fluid flowrate that can be delivered.					Initial Resistance	Ni aa la		mm of \\/-+	Initial now filter fluid reciptores II a measure does at the manifestore in fluorest and the file of the III and a					Initial Resistance	Number	Inches of Water	mm of Water	Initial new filter fluid resistance (i.e., pressure drop at the maximum air flowrate across the filter when the filter is new pe	r								ASHRAE Standard 52.1).					Nominal Filter Face Velocity	Number	Feet/Minute		Filter face velocity.					Nominal Flowrate	Number	Cubic	Liter/Minute	Nominal fluid flow rate through the filter.							Feet/Minute							Nominal Media Surface Velocity	Number	Feet/Minute		Average fluid velocity at the media surface.					Nominal Particle Geometric Mean Diameter	Number	Microns		Particle geometric mean diameter associated with nominal efficiency.					Nominal Particle Geometric Standard Deviation	Number	Microns		Particle geometric standard deviation associated with nominal efficiency.					Nominal Pressure Drop	Number	Inches of Water	mm of Water	Total pressure drop across the filter.					•			Degrees C	Allowable operation ambient fluid temperature range.					Operation Temperature Range	Milmnar			miowabie operation ambient haid temperature range.		1			Operation Temperature Range	Number	Degrees F	Degrees e						Weight	Number	Lbs/Kgs	Degrees	Weight of filter.					Weight Counted Efficiency	Number Number	Lbs/Kgs Percent	Degrees	Weight of filter. Filter efficiency					Weight Counted Efficiency Particle Mass Holding	Number Number Number	Lbs/Kgs Percent Grams	Degrees c	Weight of filter. Filter efficiency Mass of particle holding in the filter.					Weight Counted Efficiency	Number Number	Lbs/Kgs Percent	Degrees	Weight of filter. Filter efficiency				A	Air Filter				0 511 0 11	Air particle filter type attributes.				------	--------------------------------	---------	--------------	------------------	-------------------------------	--	------------------	--			Air Particle Filter Type	Text			Coarse Filter, Coarse Metal	A panel dry type extended surface filter is a dry-type air filter					Counted Efficiency Curve	Number	Percent/Gram			Counted efficiency curve as a function of dust holding weight					Dust Holding Capacity	Number	Grams			Maximum filter dust holding capacity.					Face Surface Area	Number	Square Inch	Square mm		Face area of filter frame.					Frame Material	Text				Filter frame material.					Media Extended Area	Number	Square Inch	Square mm		Total extended media area.					Nominal Counted Efficiency	Number	Percent			Nominal filter efficiency based the particle count concentration before and after the filter against particles with a certain					Nominal Weighted Efficiency	Number	Percent			size distribution. Nominal filter efficiency based the particle weight concentration before and after the filter against particles with a certain					Nonlina Weighted Efficiency	Number	reiteiit			size distribution.					Pressure Drop Curve	Number	PSI	Pa		Under certain dust holding weight, DelPressure = f (fluid flowrate)					Separation Type	Text				Air particulate filter media separation type.					Weighted Efficiency Curve	Number	Percent			Weighted efficiency curve as a function of dust holding weight, efficiency = f (dust holding weight).				C	Compressed Air Filter					Compressed air filter type attributes.					Automatic Condensate Discharge	Text				Whether or not the condensing water or oil is discharged automatically from the filter.					Clogging Indicator	Logical			True or False	Whether the filter has an indicator to display the degree of clogging of the filter.					Compressed Air Filter Type	Text				ACTIVATED CARBON: absorbs oil vapor and odor; PARTICLE FILTER: used to absorb solid particles of medium size;										COALESCENSE FILTER: used to absorb fine solid, oil, and water particles, also called micro filter					Operation Pressure Max	Number	PSI	Pa		Maximum pressure under normal operating conditions.					Particle Absorption Curve	Number	Percent			Ratio of particles that are removed by the filter				V	Vater Filter					Water filter type attributes.					Water Filter Type	Text			Filtration; purification;	Further qualifies the type of water filter				Flow	Meter					A flow meter is a device that is used to measure the flow rate in a system.	IfcFlowMeter			N	Meter Type	Text			Energy, Gas, Oil, Water, User	The property enumeration defines the types of meter that may be specified within the property set.									Defined					P	rurpose	Text			Master, Submaster,	Enumeration defining the purpose of the flow meter occurrence.				R	lead Out Type	Text			Dial, Digital, Other, Not	Indication of the form that readout from the meter takes. In the case of a dial read out, this may comprise multiple dials									Known, Unset	that give a cumulative reading and/or a mechanical odometer.				R	temote Reading	Logical			True or False	Indicates whether the meter has a connection for remote reading through connection of a communication device (set										TRUE) or not (set FALSE).				E	nergy Meter					Device that measures, indicates and sometimes records, the energy usage in a system.					Maximum Current	Number	Amps			The maximum allowed current that a device is certified to handle.					Multiple Tariff	Text	A			Indicates whether meter has built-in support for multiple tariffs (variable energy cost rates).					Nominal Current	Number	Amps			The nominal current that is designed to be measured.				9	Gas Meter					Device that measures, indicates and sometimes records, the volume of gas that passes through it without interrupting the flow.					Connection Size	Number	Inch	mm		Defines the size of inlet and outlet pipe connections to the meter.					Gas Type	Text				Defines the types of gas																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
that may be specified.					Maximum Flow Rate	Number	Cubic	Liter/Minute		Maximum rate of flow which the meter is expected to pass.							Feet/Minute	•							Maximum Pressure Loss	Number	PSI	Pa		Pressure loss expected across the meter under conditions of maximum flow.				C	Dil Meter					Device that measures, indicates and sometimes records, the volume of oil that passes through it without interrupting the					Connection Size	Number	Inch	mm		Defines the size of inlet and outlet pipe connections to the meter.					Maximum Flow Rate	Number	Gallons/Min	Liters/Min		Maximum rate of flow which the meter is expected to pass.				V	Vater Meter					Device that measures, indicates and sometimes records, the volume of water that passes through it without interrupting					Backflow Preventer Type	Text			Atmospheric Vacuum	Identifies the type of backflow preventer installed									breaker, Anti Siphon valve,										Double Check Backflow										Preventer, Pressure Vacuum										breaker, Reduced Pressure										Backflow Preventer, Other,										Not known, Unset																Connection Size	Number	Inch	mm		Defines the size of inlet and outlet pipe connections to the meter.					Maximum Flow Rate	Number	Gallons/Min	mm Liters/Min		Maximum rate of flow which the meter is expected to pass.					Maximum Pressure Loss	Number	PSI	Pa		Pressure loss expected across the meter under conditions of maximum flow.						Text	r Ji	га	Compound, Inferential,	Defines the allowed values for selection of the flow meter operation type.					Type	Text			Piston, Other, Not Known,	permes the anowed values for selection of the now meter operation type.									Unset					Heat	Exchanger					A heat exchanger is a device used to provide heat transfer between non-mixing media such as plate and shell and tube	IfcHeatExchanger				J.					heat exchangers.				E	xchanger Type	Text				The property enumeration defines the types of heat exchanger that may be specified within the property set.					rrangement	Text			Counter flow, Crossflow,	Defines the basic flow arrangements for the heat exchanger:					late Exchanger				,	Plate heat exchanger type															Number Of Plates	Number	None		1,2,3	Number of plates used by the plate heat exchanger.			-----	---	--	--	------------------------	---------------------------------	---	----------------		Hun	nidifier					A humidifier is a device that adds moisture into the air.	lfcHumidifier			Humidifier Type	Text				The property enumeration defines the types of humidifier that may be specified within the property set.				Air Pressure Drop Curve	Number	PSI	Pa		Air pressure drop versus air-flow rate.				Application	Text			Fixed; Portable	Humidifier application.				Internal Control	Text	0.11			Internal modulation control.				Nominal Air Flow Rate	Number	Cubic	Liter/Minute		Nominal rate of air flow into which water vapor is added.				Nominal Moisture Gain	Number	Feet/Minute Gallons/Day			Nominal rate of water vapor added into the airstream.				Saturation Efficiency Curve	Number	Percent			Saturation efficiency as a function of the air flow rate.				Water Requirement	Number	Gallons/Min	Liters/Min		Make-up water requirement.				Weight	Number	Lbs/Kgs	Litters/ Willi		The weight of the humidifier.				Atmospheric Pressure	Number	PSI	Pa		Ambient atmospheric pressure.				Saturation Efficiency	Number	Percent	-		Saturation efficiency			Pun	·					A pump is a device which imparts mechanical work on fluids or slurries to move them through a channel or pipeline.	IfcPump												Pump Type	Text				The property enumeration defines the types of pump that may be specified within the property set.				Base Type	Text			Frame.	Defines general types of pump bases.				Connection Size	Number	Inch	mm		The connection size of the to and from the pump.				Drive Connection Type	Text			Direct drive.	The way the pump drive mechanism is connected to the pump.				Flow Rate Range	Number	Gallons/Min	Liters/Min		Allowable range of volume of fluid being pumped against the resistance specified.				Flow Resistance Range	Number	PSI	Pa		Allowable range of frictional resistance against which the fluid is being pumped.				Flowrate	Number	Gallons/Min	Liters/Min		The actual operational fluid flowrate.				Impeller Diameter	Number	Inch	mm		Diameter of pump impeller - used to scale performance of geometrically similar pumps.				Mechanical Efficiency	Number	Percent			The pumps operational mechanical efficiency.				Net Positive Suction Head	Number	Inch	mm		Minimum liquid pressure at the pump inlet to prevent cavitation.				Nominal Rotation Speed	Number	RPM			Pump rotational speed under nominal conditions.				Overall Efficiency	Number	Percent			The pump and motor overall operational efficiency.				Power Process Pico	Number Number	Horsepower PSI	Pa		The actual power consumption of the pump. The developed pressure.				Pressure Rise Rotation Speed	Number	RPM	ra		Pump rotational speed.				Temperature Range	Number	Degrees F	Degrees C		Allowable operational range of the fluid temperature.				ce Heater	IVamber	Degrees	Вергеез е		Space heaters utilize a combination of radiation and/or natural convection using a heating source such as electricity,	IfcSpaceHeater		Spu	et neutei					steam or hot water to heat a limited space or area.	nespace react			Space Heater Type	Text				The property enumeration defines the types of space heater that may be specified within the property set.				Air Resistance Curve	Number	Inch/mm of			Air resistance curve (w/ fan only); Pressure = f (flow rate).						Water/CFM							Auxiliary Energy Source Consumption	Number	Watts			Auxiliary energy source consumption.					A. 1	None			Ratio of the real heat transfer rate to the maximum possible heat transfer rate.				Effectiveness	Number	Itoric		Floatric Natural Cos					Effectiveness Energy Source	Number Text	Hone		Electric, Natural Gas,	Enumeration defining the energy source or fuel combusted to generate heat if applicable						None		Propane, Hot Water, Steam,	Enumeration defining the energy source or fuel combusted to generate neat if applicable				Energy Source		None								Text			Propane, Hot Water, Steam,	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature).				Energy Source	Text			Propane, Hot Water, Steam,					Energy Source Exponent	Text Number	None None None		Propane, Hot Water, Steam,	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer.				Energy Source Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate	Number Number Number Number	None None		Propane, Hot Water, Steam,	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate.				Energy																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
Source Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension	Number Number Number Number Text	None None None		Propane, Hot Water, Steam,	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater.				Energy Source Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium	Number Number Number Number Text Text	None None None BTU/Hr		Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable.				Energy Source Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels	Number Number Number Number Text Text Number	None None BTU/Hr		Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels.				Energy Source Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections	Number Number Number Number Text Text Number Number	None None BTU/Hr None None		Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity	Number Number Number Number Text Text Number Number Number Number	None None BTU/Hr None None Watts		Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer.				Energy Source Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections	Number Number Number Number Text Text Number Number	None None BTU/Hr None None Watts Watts per Degree		Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve	Number Number Number Number Text Text Number Number Number Number Number	None None BTU/Hr None None Watts		Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater).				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity	Number Number Number Number Text Text Number Number Number Number	None None BTU/Hr None None Watts Watts per Degree	mm	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater). Indicates how the space heater is designed to be placed.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve	Number Number Number Number Text Text Number Number Number Number Number Text	None None None BTU/Hr None None Watts Watts per Degree F/C	mm Degrees C	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater).				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve Placement Type Size	Number Number Number Number Text Text Number Number Number Number Number Number Number	None None None BTU/Hr None None Watts Watts per Degree F/C Inch		Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater). Indicates how the space heater is designed to be placed. Overall body mass of the heater.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve Placement Type Size Space Air Temperature	Number Number Number Number Text Text Number Number Number Number Number Number Number Number	None None None BTU/Hr None None Watts Watts per Degree F/C Inch Degrees F	Degrees C	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater).																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
Indicates how the space heater is designed to be placed. Overall body mass of the heater. Dry bulb temperature in the space.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve Placement Type Size Space Air Temperature Space Mean Radiant Temperature	Number Number Number Number Text Text Number Number Number Number Number Number Number Number Number	None None None BTU/Hr None None Watts Watts per Degree F/C Inch Degrees F Degrees F	Degrees C Degrees C	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater). Indicates how the space heater is designed to be placed. Overall body mass of the heater. Dry bulb temperature in the space. Mean radiant temperature in the space.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve Placement Type Size Space Air Temperature Space Mean Radiant Temperature Surface Temperature	Number Number Number Number Text Text Number	None None None BTU/Hr None None Watts Watts per Degree F/C Inch Degrees F Degrees F	Degrees C Degrees C	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater). Indicates how the space heater is designed to be placed. Overall body mass of the heater. Dry bulb temperature in the space. Mean radiant temperature in the space. Average surface temperature of the component.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve Placement Type Size Space Air Temperature Space Mean Radiant Temperature Surface Temperature Temperature Classification Thermal Efficiency	Number Number Number Number Text Text Number Number Number Number Number Number Text Number	None None None BTU/Hr None None Watts Watts per Degree F/C Inch Degrees F Degrees F	Degrees C Degrees C	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater). Indicates how the space heater is designed to be placed. Overall body mass of the heater. Dry bulb temperature in the space. Mean radiant temperature in the space. Average surface temperature of the component. Enumeration defining the temperature classification of the space heater surface temperature. Overall Thermal Efficiency is defined as gross energy output of the heat transfer device divided by the energy input.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve Placement Type Size Space Air Temperature Space Mean Radiant Temperature Surface Temperature Temperature Classification Thermal Efficiency Thermal Mass Heat Capacity	Number Number Number Number Text Text Number Number Number Number Number Text Number	None None None BTU/Hr None None Watts Watts Watts per Degree F/C Inch Degrees F Degrees F Degrees F	Degrees C Degrees C	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater). Indicates how the space heater is designed to be placed. Overall body mass of the heater. Dry bulb temperature in the space. Mean radiant temperature in the space. Average surface temperature of the component. Enumeration defining the temperature classification of the space heater surface temperature. Overall Thermal Efficiency is defined as gross energy output of the heat transfer device divided by the energy input.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve Placement Type Size Space Air Temperature Space Mean Radiant Temperature Surface Temperature Temperature Classification Thermal Efficiency Thermal Mass Heat Capacity UV Curve	Number Number Number Number Text Text Number Number Number Number Number Number Text Number	None None None BTU/Hr None None Watts Watts per Degree F/C Inch Degrees F Degrees F	Degrees C Degrees C	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater). Indicates how the space heater is designed to be placed. Overall body mass of the heater. Dry bulb temperature in the space. Mean radiant temperature in the space. Average surface temperature of the component. Enumeration defining the temperature classification of the space heater surface temperature. Overall Thermal Efficiency is defined as gross energy output of the heat transfer device divided by the energy input. Product of component mass and specific heat. UV = f (VExterior, VInterior), UV as a function of interior and exterior fluid flow velocity at the entrance.				Exponent Fraction Convective Heat Transfer Fraction Radiant Heat Transfer Heat Output Rate Heat Transfer Dimension Heat Transfer Medium Number Of Panels Number Of Sections Output Capacity Output Capacity Curve Placement Type Size Space Air Temperature Space Mean Radiant Temperature Surface Temperature Temperature Classification Thermal Efficiency Thermal Mass Heat Capacity	Number Number Number Number Text Text Number Number Number Number Number Text Number	None None None BTU/Hr None None Watts Watts Watts per Degree F/C Inch Degrees F Degrees F Degrees F	Degrees C Degrees C	Propane, Hot Water, Steam, etc.	Characteristic exponent, slope of log(heat output) vs log (surface temperature minus environmental temperature). Fraction of the total heat transfer rate as the convective heat transfer. Fraction of the total heat transfer rate as the radiant heat transfer. Overall heat transfer rate. Indicates how heat is transmitted according to the shape of the space heater. Enumeration defining the heat transfer medium if applicable. Number of panels. Number of vertical sections, measured in the direction of flow. Total nominal heat output as listed by the manufacturer. Partial output capacity curve (as a function of water temperature); Q = f (Twater). Indicates how the space heater is designed to be placed. Overall body mass of the heater. Dry bulb temperature in the space. Mean radiant temperature in the space. Average surface temperature of the component. Enumeration defining the temperature classification of the space heater surface temperature. Overall Thermal Efficiency is defined as gross energy output of the heat transfer device divided by the energy input.			Radiator Characteristic	Tout				Space heater type radiator attributes.				--	------------------	--------------------	---------------------------------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
---	--	---	--		Radiator Type Tubing Length	Text Number	Inch	mm		Indicates the type of radiator. Water tube length inside the component.				Water Content	Number	Lbs/Kgs	111111		Weight of water content within the heater.				Cooling Air Flow Rate	Number	Cubic	Liter/Minute		Cooling air flow rate in the space.				Soomily the rest state		Feet/Minute	2.00.7						Exhaust Air Flow Rate	Number	Cubic	Liter/Minute		Exhaust air flow rate in the space.						Feet/Minute							Heating Air Flow Rate	Number	Cubic	Liter/Minute		Heating air flow rate in the space.						Feet/Minute							Space Relative Humidity	Number	Percent	D		The relative humidity of the space.				Space Temperature Ventilation Air Flow Rate	Number Number	Degrees F Cubic	Degrees C Liter/Minute		Temperature of the space. Ventilation air flow rate in the space.				Ventilation All Flow Rate	Number	Feet/Minute	Liter/ivilliute		ventilation all flow rate in the space.				Tank		recy will de			A tank is a vessel or container in which a fluid or gas is stored for later use				Tank Type	Text				The property enumeration defines the types of tank that may be specified within the property set.				Storage Type	Text			Fuel, Oil, Water, Rain Water,	Defines the general material category intended to be stored.								Waste Water, Potable Water,									Other, Not Known					N : 10 "		6.11							Nominal Capacity	Number	Gallons/Liters		Manholo Haar Defined	The total nominal or design volumetric capacity of the tank. Defines the types of access (or cover) to a tank that may be specified.				Access Type Effective Capacity	Text Number	Gallons/Liters		Manhole, User Defined	Defines the types of access (or cover) to a tank that may be specified. The total effective or actual volumetric capacity of the tank.				End Shape Type	Text	Galions/Liters		Semi-Filintical ASMF Flanged	Defines the types of end shapes that can be used for preformed tanks. The convention for reading these enumerated				and Shape Type	TEAL			-	values is that for a vertical cylinder, the first value is the base and the second is the top; for a horizontal cylinder, the order								_	of reading should be left to right. For a spherical tank, the value UNSET should be used.								Flanged Dished, Flanged									Only, Dished Only, User									Defined					51 1 0 1 1 0 H									First Curvature Radius	Number	Inch	mm	Tours on False	First Curvature Radius should be defined as the base or left side radius of curvature value.				Has Ladder	Logical			True or False	Indication of whether the tank is provided with a ladder (set TRUE) for access to the top. If no ladder is provided then value is set FALSE. Note: No indication is given of the type of ladder (gooseneck etc.)				Has Visual Indicator	Logical			True or False	Indication of whether the tank is provided with a visual indicator (set TRUE) that shows the water level in the tank. If no				Thus Visual Indicator	Logical			True or ruise	visual indicator is provided then value is set FALSE.				Nominal Depth	Number	Inch	mm		The nominal depth of the tank.									Note: Not required for a horizontal cylindrical tank.				Nominal Length Or Diameter	Number	Inch	mm		The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank.				Nominal Width Or Diameter	Number	Inch	mm		The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank.				N. J. OSS. II	N. 1			122	Note: Not required for a vertical cylindrical tank.				Number Of Sections	Number	None		1,2,3	Number of sections used in the construction of the tank. Default is 1. Note: All sections assumed to be the same size.				Operating Weight	Number	Lbs/Kgs			Operating weight of the tank including all of its contents.				Pattern Type	Text	2007 1180		Horizontal Cylinder.Vertical	Defines the types of pattern (or shape of a tank that may be specified.				7,7				Cylinder, Rectangular, Other,									Not Known														Second Curvature Radius	Number	Inch	mm		Second Curvature Radius should be defined as the top or right side radius of curvature value.				Storage Type	Text				Defines the general material category intended to be stored.								Waste Water, Potable Water, Other, Not Known									Other, NOU KIIOWII					Tank Composition	Text			Complex, Element, Partial,	Defines the level of element composition where.								User Defined	COMPLEX: A set of elementary units aggregated together to fulfill the overall required purpose.									ELEMENT: A single elementary unit that may exist of itself or as an aggregation of partial units									PARTIAL: A partial elementary unit.				Expansion Tank			_		Specific Baseline Attributes of an expansion type tank.				Charge Pressure	Number	PSI	Pa		Nominal or design operating pressure of the tank.				Pressure Regulator Setting	Number	PSI PSI	Pa Pa		Pressure that is automatically maintained in the tank. Prossure at which the relief valve activates.				Relief Valve Setting Pressure Vessel	Number	roi	Pd		Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel.				Charge Pressure	Number	PSI	Pa		Nominal or design operating pressure of the tank.				Pressure Regulator Setting	Number	PSI	Pa		Pressure that is automatically maintained in the tank.				Relief Valve Setting	Number	PSI	Pa		Pressure at which the relief valve activates.				Sectional Tank					Fixed vessel constructed from sectional parts with one or more compartments for storing a liquid.				Number Of Sections	Number	None		1,2,3	Number of sections used in the construction of the tank				Section Length	Number	Inch	mm		The length of a section used in the construction of the tank.				- 0.		-	· · · · · · · · · · · · · · · · · · ·	<u> </u>		I				Section Width	Number	Inch	mm		The width of a section used in the construction of the tank.			------	---------------------------------------	------------------	--------------------	------------	--------------------------------	--	----------------------		Tub	e Heat Exchanger					A device that transfer heat using shell and tube configuration	IfcTubeBundle			Exchanger Type	Text				The property enumeration defines the types of tube heat exchanger that may be specified within the property set.				Fouling Factor	Number	Ft2-°F-Hr/BTU			Fouling factor of the tubes in the tube bundle.				Has Turbulator	Logical			True or False	TRUE if the tube has a turbulator, FALSE if it does not.				Horizontal Spacing	Number	None		1,2,3	Horizontal spacing between tubes in the tube bundle.				In Line Row Spacing	Number	None		1,2,3	In-line tube row spacing.				Inside Diameter	Number	Inch	mm		Actual inner diameter of the tube in the tube bundle.				Length	Number	Inch	mm		Length of the tubes in the tube bundle.				Nominal Diameter	Number	Inch	mm		Nominal diameter or width of the tubes in the																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
tube bundle.				Number Of Circuits	Number	None		1,2,3	Number of parallel fluid tube circuits.				Number Of Rows	Number	None		1,2,3	Number of tube rows in the tube bundle assembly.				Outside Diameter	Number	Inch	mm	4.2.2	Actual outside diameter of the tube in the tube bundle.				Staggered Row Spacing	Number	None		1,2,3	Staggered tube row spacing.				Thermal Conductivity Vertical Spacing	Number Number	BTU/(Hr·Ft·F) Inch	mm	1,2,3	The thermal conductivity of the tube. Vertical spacing between tubes in the tube bundle.				Volume	Number	Gallons/Liters	111111	1,2,3	Total volume of fluid in the tubes and their headers.				Finned Bundle	Number	Gallotts/ Liters			Finned tube bundle type attributes.				Diameter	Number	Inch	mm		Actual diameter of a fin for circular fins only.				Fin Corrugated Type	Text		******		Description of a fin corrugated type.				Has Coating	Logical			True or False	TRUE if the fin has a coating, FALSE if it does not.				Height	Number	Inch	mm		Length of the fin as measured perpendicular to the direction of airflow.				Length	Number	Inch	mm		Length of the fin as measured parallel to the direction of airflow.				Spacing	Number	Inch	mm		Distance between fins on a tube in the tube bundle.				Thermal Conductivity	Number	BTU/(Hr·Ft·F)			The thermal conductivity of the fin.				Thickness	Number	Inch	mm		Thickness of the fin.			Valv	re					A valve is used in a building services piping distribution system to control or modulate the flow of the fluid.	lfcValve			Valve Type	Text				The property enumeration defines the types of valve that may be specified within the property set.				Valve Pattern	Text			Single port, Angled_2 Port,	The configuration of the ports of a valve according to either the linear route taken by a fluid flowing through the valve or								Straight_2_Port, Straight_3	by the number of ports.								_Port, Crossover_4_Port					Body Material	Text				Material from which the body of the valve is constructed.				Close Off Rating	Number	PSI	Pa		Close off rating.				Flow Coefficient	Number	Kv or Cv	i u		Flow coefficient (the quantity of fluid that passes through a fully open valve at unit pressure drop), typically expressed as				Tow esemblem	reamber	NV OI CV			the Kv or Cv value for the valve.				Measured Flow Rate	Number	Gallons/Min	Liters/Min		The rate of flow of a fluid measured across the valve.				Measured Pressure Drop	Number	PSI	Pa		The actual pressure drop in the fluid measured across the valve.				Percentage Open	Number	Percent			The ratio between the amount that the valve is open to the full open position of the valve.				Size	Number	Inch	mm		The size of the connection to the valve (or to each connection for faucets, mixing valves, etc.).				Test Pressure	Number	PSI	Pa		The maximum pressure to which the valve has been subjected under test.				Valve Mechanism	Text			-	The mechanism by which the valve function is achieved.								Plug, Gland, Needle					Valve Operation	Text			Drop weight, Float,	The method of valve operation.				·				Hydraulic, Lever, Lock shield,									Motorized, Pneumatic,									Solenoid, Thermostatic,									Wheel , User Defined					Marking Procesure	NI, l-	DC!	n-		The narmally appared manimum wasting and				Working Pressure	Number	PSI	Pa		The normally expected maximum working pressure of the valve.				Air Vent	,			T. 5 '	Valve used to release air from a pipe or fitting.				Is Automatic	Logical			True or False	Indication of whether the valve is automatically operated (TRUE) or manually operated (FALSE).				Is Normally Open	Logical			True or Falco	A valve that is used to isolate system components. If TRUE, the valve is normally open. If FALSE is normally closed.				Isolating Purpose	Logical Text			True or False	Defines the purpose for which the isolating valve is used				Pressure Reducing Valve	TEAL				Valve that reduces the pressure of a fluid immediately downstream of its position in a pipeline to a preselected value or				Downstream Pressure	Number	PSI	Pa		The operating pressure of the fluid downstream of the pressure reducing valve.				Upstream Pressure	Number	PSI	Pa Pa		The operating pressure of the fluid downstream of the pressure reducing valve. The operating pressure of the fluid upstream of the pressure reducing valve.				Pressure Relief Valve	IVAIIIDEI	FJI	га	Spring Loaded	A valve that automatically discharges to a safe place fluid that has built up to excessive pressure in pipes or fittings. Note				Relief Pressure	Number	PSI	Pa	Spring Louded	The pressure at which the spring or weight in the valve is set to discharge fluid.			Vibr	ation Isolator	INGITIDE	1 31	ı a		A vibration isolator is a device used to minimize the effects of vibration transmissibility in a building	IfcVibrationIsolator		V.51						The state of s				Height	Number	Inch	mm		Height of the vibration isolator before the application of load.								-				Isolator Compressibility	Number	Lbs/Kgs		The compressibility of the vibration isolator.		----------------------------	--------	---------	----	---		Isolator Static Deflection	Number	Inch	mm	Static deflection of the vibration isolator.			Number	Lbs/Kgs		The maximum weight that can be carried by the vibration isolator.		Vibration Transmissibility	Number	Percent		The vibration transmissibility percentage.		ct-Specific N	/lilestones							---------------	-------------	------	------	------	--	--			LEED Cert							Check	Submittal																																																																																																																																																																																																																																																																																	 	 															 	 	 																													-						--	---	--	--	--	--																																																																																																																																																																																																																-	-	_	-			--	------	------	---	---	---	---	--																														 	 								 	 																																												 	 																																																														 	 																T					1	T	1	1			---	---	---	---	---	---	---	---	---	--																																																																																																																																																																									-		-																																																																																																																																																																																																																							
																																																												 		 		 		------	------	----------	------	--	------																																																																																																																																																																																																																																																																																																	-	-																																										 																																																														 		<u> </u>																																									ı		ı		ı	ı			---	-----	---	---	---	---	---	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					1	l .	l	l	l	l	l			T							---	--	--	--	--	--																																																																																																																																																																																																																																																																																																																																																																																							 					------	------	------	--	--	--																																																																																																																																							 	 	 																																								
--	----------------------------------	-----------	-------------	-------------		dditional	License								Estimating	Estimating		ttribute		Data Type	Units - Imp.	Units - Metric	Option Examples	Commentary	IFC Name	COBie Tag	Est. 1	Bid Pkg.		lobal Attrib		.										Component I Condition Sta		Text Text			New, Existing, Demolish,	Part or Equipment Tag Status of the element, predominately used in renovation or retrofitting projects						Condition Sta	dtus	Text			Temporary, User Defined	status of the element, predominately used in renovation of retrolitting projects						Room Numbe	er	Text			remporary) osci semica	Room number where component to be/is installed						Room Name		Text				Room name where component to be/is installed						Story Numbe	er	Text				Floor or level room is located						Manufacture		Text				The organization that manufactured and/or assembled the item.						Product Nam		Text				The manufacturers model name of the product model (or product line)						Model Design Target LOD	nation	Text Text			100, 200, 300, 350, 400	The manufacturers model number or designator of the product model (or product line)						Current LOD		Text			100, 200, 300, 350, 400									TEXE			100, 200, 300, 350, 400							Component of	characteristics					Properties of individual elements of manufactured products						Acquisition D	Date	Date Time	Date			The date that the manufactured item was purchased.						Assembly Pla	ace	Text				Code defining where the assembly takes place						Bar Code		Text				The identity of the bar code given to an occurrence of the product.						Batch Refere		Text				The identity of the batch reference from which an occurrence of a product is taken.						Production You		Number	Year			The year of production of the manufactured item.						Serial Number Design Perfor		Text				The serial number assigned to an occurrence of a product.						Service Life						Captures the period of time that an artifact will last.							Between Failure	Number	Days			The average time duration between instances of failure of a product.						Service Life D		Number	Year(s)			The length or duration of a service life.						Service Life F	Factors					Captures various factors that impact the expected service life of elements within the system or zone.						Design Level		Text				Adjustment of the service life resulting from the effect of design level employed.						Indoor Enviro		Text				Adjustment of the service life resulting from the effect of the indoor environment (where appropriate).						In Use Condit		Text				Adjustment of the service life resulting from the effect of the conditions in which components are operating.						Maintenance	e Level	Text				Adjustment of the service life resulting from the effect of the level or degree of maintenance applied to components.						Outdoor Envi	vironment	Text				Adjustment of the service life resulting from the effect of the outdoor environment (where appropriate)						Quality Of Co		Text				Adjustment of the service life resulting from the effect of the quality of components used.						Work Executi	•	Text				Adjustment of the service life resulting from the effect of the quality of work executed.						Warranty						A written guarantee, issued to the purchaser of an article by its manufacturer, promising to repair or replace it if												necessary within a specified period of time						Exclusions		Text				Items, conditions or actions that may be excluded from the warranty or that may cause the warranty to become void.						Is Extended V	Warranty	Logic			True or False	Indication of whether this is an extended warranty whose duration is greater than that normally assigned						Point Of Cont	· · · · · · · · · · · · · · · · · · ·	Text			True or raise	The organization that should be contacted for action under the terms of the warranty.						Warranty Cor		Text				The content of the warranty.						Warranty End		Date Time	Date			The date on which the warranty expires.						Warranty Ide		Text				The identifier assigned to a warranty.						Warranty Per	riod	Number	Year(s)			The time duration during which a manufacturer or supplier guarantees or warrants the performance of an artefact.						\\\-\ : °	and Date	D-/ T				The data or which the control of						Warranty Sta		Date Time	Date			The date on which the warranty commences.							cific Attributes					Commendation when fitting that welfage true or many injects into a startle wire	If a Fina Communication Township					Breechin	ng iniet					Symmetrical pipe fitting that unites two or more inlets into a single pipe	IfcFireSuppressionTerminal					Breed	eching Inlet Type	Text				Defines the type of breeching inlet.							pling Type	Text				Defines the type coupling on the inlet of the breeching inlet.						Has C		Logic			True or False	Does the inlet connection have protective caps.						Inlet	Diameter	Number	Inch	mm		The inlet diameter of the breeching inlet.						Flow Me	eter					A flow meter is a device that is used to measure the flow rate in a system.	IfcFlowMeter					Mete	er Type	Text			Energy, Gas, Oil, Water, Use Defined	r Identifies the predefined types of meter from which the type required may be set.						Purpo	oose	Text			Master, Submaster, Submeter, Other, Unknown	Enumeration defining the purpose of the flow meter occurrence.									,					 			---------	------------------------------------	--------------	----------------	---------------	-----------------------------	--	----------------------------	------	---		Rea	d Out Type	Text			Dial, Digital, Other, Not	Indication of the form that readout from the meter takes. In the case of a dial read out, this may comprise multiple dials						aata Baadina	l a =! =			Known, Unset	that give a cumulative reading and/or a mechanical odometer.					Ren	note Reading	Logic			True or False	Indicates whether the meter has a connection for remote reading through connection of a communication device (set					Fne	rgy Meter					TRUE) or not (set FALSE). Device that measures, indicates and sometimes records, the energy usage in a system.						Maximum Current	Number	Amps			The maximum allowed current that a device is certified to handle.						Multiple Tariff	Text	Amps			Indicates whether meter has built-in support for multiple tariffs (variable energy cost rates).						Nominal Current	Number	Amps			The nominal current that is designed to be measured.						Meter	TTGTTIDE!	711105			Device that measures, indicates and sometimes records, the volume of gas that passes through it without interrupting the											flow.						Connection Size	Number	Inch	mm		Defines the size of inlet and outlet pipe connections to the meter.						Gas Type	Text				Defines the types of gas that may be specified.						Maximum Flow Rate	Number	Cubic Ft / Min	Liters/Min		Maximum rate of flow which the meter is																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
expected to pass.						Maximum Pressure Loss	Number	PSI	Pa		Pressure loss expected across the meter under conditions of maximum flow.					Oil	Meter					Device that measures, indicates and sometimes records, the volume of oil that passes through it without interrupting the						Connection Size	Number	Inch	mm		Defines the size of inlet and outlet pipe connections to the meter.						Maximum Flow Rate	Number	Cubic Ft / Min	Liters/Min		Maximum rate of flow which the meter is expected to pass.					Wat	ter Meter					Device that measures, indicates and sometimes records, the volume of water that passes through it without interrupting						Backflow Preventer Type	Text			Atmospheric Vacuum	Identifies the type of backflow preventer installed										breaker, Anti Siphon valve,											Double Check Backflow											Preventer, Pressure Vacuum											breaker											Reduced Pressure Backflow											Preventer Other																						Not known Unset											Oliset							Connection Size	Number	Inch	mm		Defines the size of inlet and outlet pipe connections to the meter.						Maximum Flow Rate	Number	Cubic Ft / Min	Liters/Min		Maximum rate of flow which the meter is expected to pass.						Maximum Pressure Loss	Number	PSI	Pa		Pressure loss expected across the meter under conditions of maximum flow.						Туре	Text		<u>-</u>	Compound, Inferential,	Defines the allowed values for selection of the flow meter operation type.										Piston, Other, Not Known,											Unset						Hose Re	eel					A supporting framework on which a hose may be wound (BS6100 155 8201).	IfcFireSuppressionTerminal																					Note that the service provided by the hose (water/foam) is determined by the context of the system onto which the					11	De al Marcakin e Trus	T				hose reel is connected.						e Reel Mounting Type e Nozzle Type	Text Text				Identifies the predefined types of hose reel mounting Identifies the predefined types of nozzle spray pattern						sification Authority	Text			NFPA, FEMA	The name of the authority that applies the classification of service to the hose reel						ss Of Service	Text			NFFA, FLIVIA	A classification of usage of the hose reel that may be applied.						se Diameter	Number	Inch	mm		Notional diameter (bore) of the hose.						e Length	Number	Inch	mm		Nominal length of the hose fitted to the hose reel when fully extended.						se Reel Type	Text				Identifies the predefined types of hose arrangement						t Connection Size	Number	Inch	mm		Size of the inlet connection to the hose reel.					Hydrant						Device, fitted to a pipe, through which a temporary supply of water may be provided (BS6100 330 6107)	IfcFireSuppressionTerminal				,											Fire	Hydrant Type	Text			DryBarrel, WetBarrel, User	Defines the range of hydrant types from which the required type can be selected where.										defined						Bod	ly Color	Text			_	Color of the body of the hydrant.			1							for statutory colors											0 11 12						Сар	Color	Text				Color of the caps of the hydrant.										for statutory colors						Disc	charge Flow Rate	Number	Gallons/Min	Liters/Min		The volumetric rate of fluid discharge.						w Class	Text	Ganons, Willi	Licers/ Willi	AA, A, B, C	AlphaNumber indication of the flow class of a hydrant						se Connection Size	Number	Inch	mm	лп, п, в, с	The size of connections to which a hose may be connected (other than that to be linked to a pumping unit).						mber Of Hose Connections	Number	None			The number of hose connections on the hydrant (excluding the pumper connection).						ssure Rating	Number	PSI	Pa		Maximum pressure that the hydrant is manufactured to withstand.						nper Connection Size	Number	Inch	mm		The size of a connection to which a fire hose may be connected that is then linked to a pumping unit.						ter Is Potable	Logic			True or False	Indication of whether the water flow from the hydrant is potable (set TRUE) or non potable (set FALSE).					Pump		0.4					IfcPump				тр						typical use of a pump is to circulate chilled water or heating hot water in a building services distribution system																												Pump Type	Text			T	The property or marking defines the types of grown that may be an affect within the property set			------	--	--	--	--	--------------------------------	--	----------------------------			Base Type	Text			Frame, Base, None, Other	The property enumeration defines the types of pump that may be specified within the property set. Defines general types of pump bases.				Connection Size	Number	Inch	mm	Traine, base, None, Other	The connection size of the to and from the pump.				Drive Connection Type	Text	men		Direct drive, Belt drive,	The way the pump drive mechanism is connected to the pump				7,1				Coupling, Other	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Flow Rate Range	Number	Gallons/Min	Liters/Min		Allowable range of volume of fluid being pumped against the resistance specified.				Flow Resistance Range	Number	Kv or Cv			Allowable range of frictional resistance against which the fluid is being pumped.				Flowrate	Number	Gallons/Min	Liters/Min		The actual operational fluid flowrate.				Impeller Diameter	Number	Inch	mm		Diameter of pump impeller				Mechanical Efficiency	Number	Percentage			The pumps operational mechanical efficiency.				Net Positive Suction Head	Number	NPSH			Minimum liquid pressure at the pump inlet to prevent cavitation.				Nominal Rotation Speed	Number	RPM			Pump rotational speed under nominal conditions.				Overall Efficiency	Number	Percentage			The pump and motor overall operational efficiency.				Power	Number	Voltage	_		The actual power consumption of the pump.				Pressure Rise	Number	PSI	Pa		The developed pressure.				Rotation Speed	Number	RPM	Dogwood C		Pump rotational speed.				Temperature Range rinkler Head	Number	Degrees F	Degrees C		Allowable operational range of the fluid temperature. Device for sprinkling water from a pipe under pressure over an area (BS6100 100 3432)	If EiroCumproccionTorminal		Spri	ilikiei neau					Device for sprinking water from a pipe under pressure over an area (656100 100 5452)	IfcFireSuppressionTerminal			Sprinkler Type	Text				Identifies the predefined types of sprinkler from which the type required may be set.				Activation	Text				Identifies the predefined methods of sprinkler activation				Activation Temperature	Number	Degrees F	Degrees C		The temperature at which the object is designed to activate.				Bulb Liquid Color	Text	- 5	.0		The color of the liquid in the bulb for a bulb activated sprinkler				Connection Size	Number	Inch	mm		Size of the inlet connection to the sprinkler.				Coverage Area	Number	SF			The area that the sprinkler is designed to protect.				Discharge Coefficient	Number	Kv or Cv			The coefficient of flow at the sprinkler.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
Discharge Flow Rate	Number	GPM			The volumetric rate of fluid discharge.				Has Deflector	Logic			True or False	Indication of whether the sprinkler has a deflector (baffle) fitted to diffuse the discharge on activation (= TRUE) or not (=									FALSE).				Maximum Working Pressure	Number	PSI	Pa		Maximum pressure that the object is manufactured to withstand.				Residual Flowing Pressure	Number	PSI	Pa		The residual flowing pressure in the pipeline at which the discharge flow rate is determined.				Response	Text				Identifies the predefined methods of sprinkler response			Tan						A tank is a vessel or container in which a fluid or gas is stored for later use.	IfcTank			Tank Type	Text	0.11		Fuel, Oil, Water, Rain Water,	Identifies the predefined types of tank from which the type required may be set.				Nominal Capacity	Number	Gallons	Liters		The total nominal or design volumetric capacity of the tank.				Access Type	Text	Callana	Litoro		Defines the types of access (or cover) to a tank The total offerting are extual value protein accessity of the total.				Effective Capacity End Shape Type	Number	Gallons	Liters		The total effective or actual volumetric capacity of the tank. Defines the types of end shapes that can be used for preformed tanks				TETIO STIAPE TYPE					First Curvature Radius should be defined as the base or left side radius of curvature value.				First Curvature Radius	Text	Inch			Thist curvature hadius should be defined as the base of left side fadius of curvature value.				First Curvature Radius	Number	Inch	mm	True or False	Indication of whether the tank is provided with a ladder(TRLIE) or no ladder(FALSE)				Has Ladder	Number Logic	Inch	mm	True or False True or False	Indication of whether the tank is provided with a ladder(TRUE) or no ladder(FALSE) Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE)				Has Ladder Has Visual Indicator	Number	Inch	mm	True or False True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE)				Has Ladder Has Visual Indicator Nominal Depth	Number Logic Logic				Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank				Has Ladder Has Visual Indicator	Number Logic Logic Number	Inch	mm		Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE)				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter	Number Logic Logic Number Number	Inch Inch	mm mm		Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections	Number Logic Logic Number Number Number	Inch Inch Inch None	mm mm mm		Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight	Number Logic Logic Number Number Number	Inch Inch Inch	mm mm		Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections	Number Logic Logic Number Number Number Number Number	Inch Inch Inch None	mm mm mm		Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type	Number Logic Logic Number Number Number Number Number Text	Inch Inch Inch None Lbs	mm mm mm Kgs		Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius	Number Logic Logic Number Number Number Number Text Number	Inch Inch Inch None Lbs	mm mm mm Kgs		Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type	Number Logic Logic Number Number Number Number Text Number Text	Inch Inch Inch None Lbs	mm mm mm Kgs	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition	Number Logic Logic Number Number Number Number Text Number Text	Inch Inch Inch None Lbs	mm mm mm Kgs	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank	Number Logic Logic Number Number Number Number Text Number Text Text	Inch Inch Inch None Lbs Inch	mm mm mm Kgs	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure	Number Logic Logic Number Number Number Number Text Number Text Text Number	Inch Inch Inch None Lbs Inch	mm mm mm Kgs mm	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting	Number Logic Logic Number Number Number Number Text Number Text Text Number Number	Inch Inch Inch None Lbs Inch PSI PSI	mm mm Kgs mm	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting Relief Valve Setting Pressure Vessel Charge Pressure	Number Logic Logic Number Number Number Number Text Number Text Text Number Number Number Number	Inch Inch Inch None Lbs Inch PSI PSI PSI	mm mm Kgs mm Pa Pa Pa	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting Relief Valve Setting Pressure Regulator Setting Pressure Regulator Setting Pressure Regulator Setting Pressure Regulator Setting	Number Logic Logic Number Number Number Number Text Number Text Text Number Number Number Number Number Number Number Number	Inch Inch Inch None Lbs Inch PSI PSI PSI PSI	mm mm Kgs mm Pa Pa Pa Pa Pa	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure that is automatically maintained in the tank.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting Relief Valve Setting Pressure Regulator Setting Relief Valve Setting Relief Valve Setting Relief Valve Setting Relief Valve Setting	Number Logic Logic Number Number Number Number Text Number Text Text Number Number Number Number	Inch Inch Inch None Lbs Inch PSI PSI PSI	mm mm Kgs mm Pa Pa Pa	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting Relief Valve Setting Pressure Regulator Setting Relief Valve Setting Sectional Tank	Number Logic Logic Number Number Number Number Number Text Number Text Text Number Number Number Number Number Number Number Number Number	Inch Inch Inch Inch None Lbs Inch PSI PSI PSI PSI PSI PSI PSI	mm mm Kgs mm Pa Pa Pa Pa Pa	Complex, Element, Partial	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Fixed vessel constructed from sectional parts with one or more compartments for storing a liquid.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
Pressure Pressure Regulator Setting Relief Valve Setting Pressure Regulator Setting Relief Valve Setting Relief Valve Setting Relief Valve Setting Relief Valve Setting	Number Logic Logic Number Number Number Number Text Number Text Text Number Number Number Number Number Number Number Number	Inch Inch Inch None Lbs Inch PSI PSI PSI PSI	mm mm Kgs mm Pa Pa Pa Pa Pa	True or False	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Fixed vessel constructed from sectional parts with one or more compartments for storing a liquid. Number of sections used in the construction of the tank				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting Relief Valve Setting Pressure Vessel Charge Pressure Pressure Regulator Setting Relief Valve Setting Relief Valve Setting Relief Valve Setting Sectional Tank Number Of Sections	Number Logic Logic Number Number Number Number Text Number Text Text Number	Inch Inch Inch None Lbs Inch PSI PSI PSI PSI PSI None	mm mm Kgs mm	Complex, Element, Partial	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Fixed vessel constructed from sectional parts with one or more compartments for storing a liquid. Number of sections used in the construction of the tank Note: All sections assumed to be the same size.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting Relief Valve Setting Pressure Regulator Setting Relief Valve Setting Relief Valve Setting Relief Valve Setting Sectional Tank Number Of Sections Section Length	Number Logic Logic Number Number Number Number Number Text Number Text Text Number	Inch Inch Inch Inch None Lbs Inch PSI PSI PSI PSI PSI Inch Inch Inch	mm mm mm Kgs mm Pa	Complex, Element, Partial	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Fixed vessel constructed from sectional parts with one or more compartments for storing a liquid. Number of sections used in the construction of the tank Note: All sections assumed to be the same size. The length of a section used in the construction of the tank.				Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting Relief Valve Setting Pressure Vessel Charge Pressure Pressure Regulator Setting Relief Valve Setting Sectional Tank Number Of Sections Section Length Section Width	Number Logic Logic Number Number Number Number Text Number Text Text Number	Inch Inch Inch None Lbs Inch PSI PSI PSI PSI PSI None	mm mm Kgs mm	Complex, Element, Partial	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Fixed vessel constructed from sectional parts with one or more compartments for storing a liquid. Number of sections used in the construction of the tank Note: All sections assumed to be the same size. The length of a section used in the construction of the tank.	IfeValve			Has Ladder Has Visual Indicator Nominal Depth Nominal Length Or Diameter Nominal Width Or Diameter Number Of Sections Operating Weight Pattern Type Second Curvature Radius Storage Type Tank Composition Expansion Tank Charge Pressure Pressure Regulator Setting Relief Valve Setting Pressure Vessel Charge Pressure Pressure Regulator Setting Relief Valve Setting Sectional Tank Number Of Sections Section Length Section Width	Number Logic Logic Number Number Number Number Number Text Number Text Text Number	Inch Inch Inch Inch None Lbs Inch PSI PSI PSI PSI PSI Inch Inch Inch	mm mm mm Kgs mm Pa	Complex, Element, Partial	Indication of whether the tank is provided with a visual indicator(TRUE) or no visual indicator(FALSE) The nominal depth of the tank The nominal length or, in the case of a vertical cylindrical tank, the nominal diameter of the tank. The nominal width or, in the case of a horizontal cylindrical tank, the nominal diameter of the tank. Note: Not required for Number of sections used in the construction of the tank Operating weight of the tank including all of its contents. Defines the types of pattern (or shape of a tank) that may be specified. Second Curvature Radius should be defined as the top or right side radius of curvature value. Defines the general material category intended to be stored. Defines the level of element composition Specific Baseline Attributes of an expansion type tank. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Specific Baseline Attributes of a pressure vessel. Nominal or design operating pressure of the tank. Pressure that is automatically maintained in the tank. Pressure at which the relief valve activates. Fixed vessel constructed from sectional parts with one or more compartments for storing a liquid. Number of sections used in the construction of the tank Note: All sections assumed to be the same size. The length of a section used in the construction of the tank.	IfcValve		Valve Type	Text				Identifies the predefined types of valve from which the type required may be set.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																						
----------------------------------	----------------	------------	-----------	-------------------------------	---	---------------------	---	--		Valve Type Valve Operation	Text			Dropwight, Float, Hydraulic	The method of valve operation					valve operation	TCAC			lever, Lockshield, Motorized,	The filetilod of valve operation									Pneumatic, Solenoid, Spring,										Thermostatic, Chainwheel										· ·																Body Material	Text				Material from which the body of the valve is constructed.					Close Off Rating	Number	PSI	Pa		Close off rating.					Flow Coefficient	Number	Kv or Cv			Flow coefficient (the quantity of fluid that passes through a fully open valve at unit pressure drop), typically expressed as					Measured Flow Rate	Number	GPM			The rate of flow of a fluid measured across the valve.					Measured Pressure Drop	Number	Kv or Cv			The actual pressure drop in the fluid measured across the valve.					Percentage Open	Number	None			The ratio between the amount that the valve is open to the full open position of the valve.					Size	Number	Inch	mm		The size of the connection to the valve (or to each connection for faucets, mixing valves, etc.).					Test Pressure	Number Text	PSI	Pa	Ball, Butterfly, Gate, Globe,	The maximum pressure to which the valve has been subjected under test. The mechanism by which the valve function					Valve Mechanism	Text			Gland, Plug, Needle	The mechanism by which the valve function									Giana, Flag, Needie						Valve Pattern	Text			2Way, 3 Way, 4 Way	The configuration of the ports of a valve					Working Pressure	Number	PSI	Pa	<i>i,</i> - <i>ii</i> -1	The normally expected maximum working pressure of the valve.					Air Vent					Valve used to release air from a pipe or fitting.										Note that an air release valve is constrained to have a single port pattern					Is Automatic	Logic			True or False	Indication of whether the valve is automatically operated (TRUE) or manually operated (FALSE).					Faucet					A small diameter valve, with a free outlet, from which water is drawn.					Faucet Function	Number	Degrees F	Degrees C		Defines the operating temperature of a faucet that may be specified.					Faucet Operation	Text			CeramicDisc, LeverHandle,	Defines the range of ways in which a faucet can be operated					Faucet Top Description	Text				Description of the operating mechanism/top of the faucet.					Faucet Type	Text			Bib, Globe, Diverter,	Defines the range of faucet types					Finish	Text				Description of the finish applied to the faucet.					Flush Valve					Valve that flushes a predetermined quantity of water to cleanse a WC, urinal or slop hopper.					FL 1: D.	N. 1	CDE // DU			Note that a flushing valve is constrained to have a 2 port pattern.					Flushing Rate	Number	GPF/LPH		Tour ou Fales	The predetermined quantity of water to be flushed.					Has Integral Shut Off Device	Logic			True or False	Indication of whether the flushing valve has an integral shut off device fitted (set TRUE) or not (set FALSE).					Is High Pressure	Logic			True or False	Indication of whether the flushing valve is suitable for use on a high pressure water main (set TRUE) or not (set FALSE).					Gas Tap Valve Has Hose Union	Logic			True or False	A small diameter valve, used to discharge gas from a system. Indicates whether the gas tap is fitted with a hose union connection (= TRUE) or not (= FALSE).					Hose Bib	Logic			True or raise	A small diameter valve, used to drain water from a tank or water filled system.					Has Hose Union	Logic			True or False	Indicates whether the drawoff cock is fitted with a hose union connection (= TRUE) or not (= FALSE).						Logic			True or ruise						Isolation Valve Is Normally Open	Logic			True or False	Valve that is used to isolate system components. If TRUE, the valve is normally open. If FALSE is normally closed.					Isolating Purpose	Text			True or raise	Defines the purpose for which the isolating valve					Mixing Valve	TOXE				A valve where typically the temperature of the outlet is determined by mixing hot and cold water inlet flows.					Mixer Control	Text				Defines the form of control of the mixing valve.					Outlet Connection Size	Number	Inch	mm		The size of the pipework connection from the mixing valve.					Pressure Reducing Valve					Valve that reduces the pressure of a fluid immediately downstream of its position in a pipeline to a preselected value or										by a predetermined ratio.										Note that a pressure reducing valve is constrained to have a 2 port pattern.					Downstream Pressure	Number	PSI	Pa		The operating pressure of the fluid downstream of the pressure reducing valve.					Upstream Pressure	Number	PSI	Pa		The operating pressure of the fluid upstream of the pressure reducing valve.					Pressure Relief Valve					Spring or weight loaded valve that automatically discharges to a safe place fluid that has built up to excessive pressure in										pipes or fittings.					Relief Pressure	Number	PSI	Pa		Note that a pressure relief valve is constrained to have a single port pattern. The pressure at which the spring or weight in the valve is set to discharge fluid.					Vibration Isolator	Nullibel	r JI	r a		1 0 0	fcVibrationIsolator				Height	Number	Inch	mm		Height of the vibration isolator before the application of load.					Isolator Compressibility	Number	Inch	mm		The compressibility of the vibration isolator.					Isolator Static Deflection	Number	Inch	mm		Static deflection of the vibration isolator.					Maximum Supported Weight	Number	Lbs	Kgs		The maximum weight that can be carried by the vibration isolator.					Vibration Transmissibility	Number	Percentage			The vibration transmissibility percentage.							_		*			(ot Crosifie a	Ailoctors							-----------------------------	-----------	--	--	--	--	--		ct-Specific N LEED Cert.								Check	Submittal																																																																																																																																																																																																																																																																																-						--	---	--	--	--	--																																					 	 			 	 			------	------	---	---	------	--------------	--																																																																																																																																																																																										 																																																																																																																																																																																	 			 	 <u>-</u>																																																				 			 	 																																																																																																																					1	l																				**BIMForum LOD Specification 2020 Part II** D- Fluid Gas Distribution nis work is licensed under the Creative Commor Part 1 - Attribute Description Part 3 - Example Project-Specific Milestones tribution-NonCommercial 4.0 International Additional Estimating Estimating **LEED Cert. LEED Cert** Attribute **Option Examples** Data Type Units - Imp. Units - Metric Commentary **IFC Name** COBie Bid Pkg. Check **Submittal** Tag **Global Attributes** 100, 200, 300, 350, 400 arget LOD Text Current LOD 100, 200, 300, 350, 400 Text tem-Specific Attributes Pipe Flange **IfcPipeSegmen** Text New, Existing, Demolish, Status of the element, predominately used in renovation or retrofitting projects Condition Status Temporary, User Defined **Bolthole Pitch** Number Diameter of the circle along which the boltholes are placed. mm **Bolt Size** Number Inch mm Size of the bolts securing the flange. Bore Size Number Inch The nominal bore of the pipe flange. mm Flange Diameter Number Inch mm Overall diameter of the flange. Flange Standard Designation of the standard describing the flange table. Flange Table Designation of the standard table to which the flange conforms. Thickness of the material from which the pipe bend is constructed. Flange Thickness Number Inch mm Number Of Bolt holes Number Number of boltholes in the																																																																																																																																																					
flange. **IfcPipeFitting** Pipe Fitting Status of the element, predominately used in renovation or retrofitting projects Condition Status Text New, Existing, Demolish, Temporary, User Defined Color The color of the pipe segment Flowrate Leakage Leakage flowrate versus pressure difference. Interior Roughness Coefficient The interior roughness coefficient of the pipe segment. Loss Coefficient Dimensionless loss coefficient used for calculating fluid resistance Temperature Range Allowable maximum and minimum temperature. **Bend Attributes** Pipe fitting type attributes for bend shapes. Bend Angle Number Degrees The change of direction of flow. Bend Radius Number Inch The radius of bending if circular arc or zero if sharp bend. Fitting Loss Factor A factor that determines the pressure loss due to friction through the fitting. Pressure Class Text The test or rated pressure classification of the fitting. Allowable maximum and minimum working pressure Pressure Range Text Pipe fitting type attributes for junction shapes. Tee/Cross Attributes Number The change of direction of flow for the left junction. Junction Left Angle Degrees The radius of bending for the left junction. Junction Left Radius Number Inch mm Junction Right Angle Number Degrees The change of direction of flow for the right junction where 0 indicates straight segment. Junction Right Radius Number Inch mm The radius of bending for the right junction where 0 indicates sharp bend. Junction Type Text Tee, Cross The type of junction **IfcPipeSegmen** Pipe New, Existing, Demolish, Status of the element, predominately used in renovation or retrofitting projects Condition Status Text Temporary, User Defined Color The color of the pipe segment. Volumetric leakage flow rate. Fluid Flow Leakage Gradient Number None The gradient of the pipe segment. Number The actual inner diameter of the pipe. Inner Diameter Inch mm Interior Roughness Coefficient Number The interior roughness coefficient of the pipe segment. Kv or Cv Invert Elevation Number The invert elevation relative to the datum established for the project. Inch mm Leakage Curve Number Kv or Cv Leakage per unit length curve versus working pressure. Nominal Diameter Number Inch The nominal diameter of the pipe segment. Outer Diameter Number Inch The actual outer diameter of the pipe. Pressure Range Number PSI/Pa Pa Allowable maximum and minimum working pressure (relative to ambient pressure). Number Degrees F/C Allowable maximum and minimum temperature. Temperature Range Working pressure. Working Pressure Number PSI/Pa Pa	<u> </u>	İ	İ	İ	İ		----------	---	---	---	---	BIMForum LOD Specification 2020 Part II D50 - Electrical	Raseline This work is licensed under the Creative Commons					Pout 1 Attailmate Description	T		Dowt 2 Fv	amenta Duais		---	-----------------	--------------	----------------	--------------------------------	--	--------------	-----------	-------------------	-------------------		Baseline This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International	2				Part 1 - Attribute Description			Part 3 - Ex	ample Proje		Additional License								Estimating	Estimating		Attribute	Data Type	Units - Imp.	Units - Metric	Option Examples	Commentary	IFC Name	COBie Tag	Est. 1	Bid Pkg.		Global Attributes	Butu Type	Omes impi	Office Wictife	Option Examples	Commencery	ii e ivaiiie	CODIC 146	LJC: I	Did i kgi		Component ID	Text				Part or Equipment Tag						Condition Status	Text				Status of the element, predominately used in renovation or retrofitting projects						Condition Status	I CAC			Temporary, User Defined	status of the element, predominately used in renovation of recontaing projects						Room Number	Text				Room number where component to be/is installed						Room Name	Text				Room name where component to be/is installed						Story Number	Text				Floor or level room is located						Manufacturer Name	Text				The organization that manufactured and/or assembled the item.						Product Name	Text				The manufacturers model name of the product model (or product line)						Model Designation	Text				The manufacturers model number or designator of the product model (or product line)						Target LOD	Text			100, 200, 300, 350, 400							Current LOD	Text			100, 200, 300, 350, 400							Component characteristics					Properties of individual elements of manufactured products						Acquisition Date	Date Time	Date			The date that the manufactured item was purchased.						Assembly Place	Text	Dute			Code defining where the assembly takes place						Bar Code	Text				The identity of the bar code given to an occurrence of the product.						Batch Reference	Text				The identity of the batch reference from which an occurrence of a product is taken.						Production Year	Number	Year			The year of production of the manufactured item.						Serial Number	Text				The serial number assigned to an occurrence of a product.						Design Performance											Service Life					Captures the period of time that an artifact will last.						Mean Time Between Failure	Number	Days			The average time duration between instances of failure of a product.						Service Life Duration	Number	Year(s)			The length or duration of a service life.						Service Life Factors	Text				Captures various factors that impact the expected service life of elements within the system or zone.						Design Level	Text				Adjustment of the service life resulting from the effect of design level employed.						Indoor Environment In Use Conditions	Text Text				Adjustment of the service life resulting from the effect of the indoor environment (where appropriate). Adjustment of the service life resulting from the effect of the conditions in which components are operating.						Maintenance Level	Text				Adjustment of the service life resulting from the effect of the level or degree of maintenance applied to components.						Walletiance Level	TEXE				and a service like resulting from the creek of the level of degree of maintenance applied to components.						Outdoor Environment	Text				Adjustment of the service life resulting from the effect of the outdoor environment (where appropriate)						Quality Of Components	Text				Adjustment of the service life resulting from the effect of the quality of components used.						Work Execution Level	Text				Adjustment of the service life resulting from the effect of the quality of work executed.						Warranty					A written guarantee, issued to the purchaser of an article by its manufacturer, promising to repair or replace it if											necessary within a specified period of time						Exclusions	Text				Items, conditions or actions that may be excluded from the warranty or that may cause the warranty to become void.						Is Extended Warranty	Logical			True or False	Indication of whether this is an extended warranty whose duration is greater than that normally assigned						Point Of Contact	Logical Text			True or raise	The organization that should be contacted for action under the terms of the warranty.						Warranty Content	Text				The content of the warranty.						Warranty End Date	Date Time	Date			The date on which the warranty expires.						Warranty Identifier	Text				The identifier assigned to a warranty.						Warranty Period	Number	Year(s)			The time duration during which a manufacturer or supplier guarantees or warrants the performance of an artefact.																	Warranty Start Date	Date Time	Date			The date on which the warranty commences.						Electrical Properties					Common electrical properties for a device						Current	Number	Amps		Tarre en Fel	The current that a device is designed to handle.						Grounded Insulation Class	Logical			True or False	Indicates whether the electrical device has a protective earth connection						Insulation Class Enclosure Classification	Text Text				Insulation standard classes provides basic protection information against electric shock. IEC 60529 Classification of degrees of protection provided by enclosures (IP Code).						Frequency	Number	Hertz			The upper and lower limits of frequency for which the operation of the device is certified.						Line Conductor	Text	110102		By color: Red. Blue. Yellow or	Function of a line conductor to which a device is intended to be connected where L1, L2 and L3 represent the phase lines	;						TCAL				according to IEC 60446 notation						Phase	Number			Single or Three	The number of live lines that is intended to be handled by the device.						Power Factor	Number	None			The ratio between the rated electrical power and the product of the device's rated current and rated voltage						Amp					The current that a device is designed to handle.						Voltage					The voltage that a device is designed to handle.																	-Specific Attributes																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
--	------------------------	------------------------	---------------	---	---------------------	--		ttery				3 31	IfcBattery			Battery Type	Text			The property enumeration defines the types of battery that may be specified within the property set.				Connected Conductor Function	Text			Function of the conductors to which the load is connected.				Earth Fault1 Pole Maximum State	Number	Amps		Maximum 1 pole earth fault current provided at the point of supply i.e. the fault between 1 phase and PE/PEN.				Earth Fault1 Pole Minimum State	Number	Amps		Minimum 1 pole earth fault current provided at the point of supply i.e. the fault between 1 phase and PE/PEN.				Earth Fault1 Pole Power Factor Maximum State	Number	Amps		Power factor of the maximum 1 pole earth fault current provided at the point of supply i.e. the fault between 1 phase and PE/PEN.				Earth Fault1 Pole Power Factor Minimum State	Number	Amps		Power factor of the minimum 1 pole earth fault current provided at the point of supply i.e. the fault between 1 phase and PE/PEN.				Nominal Frequency	Number	Hertz		The nominal frequency of the supply.				Nominal Supply Voltage	Number	Volts		The nominal voltage of the supply.				Nominal Supply Voltage Offset	Number	Volts		The maximum and minimum allowed voltage of the supply e.g. boundaries of 380V/440V may be applied for a nominal voltage of 400V.				Short Circuit1 Pole Maximum State	Number	Amps		Maximum 1 pole short circuit current provided at the point of supply i.e. the fault between 1 phase and N.				Short Circuit1 Pole Minimum State	Number	Amps		Minimum 1 pole short circuit current provided at the point of supply i.e. the fault between 1 phase and N.				Short Circuit1 Pole Power Factor Maximum State	Number	PF		Power factor of the maximum 1 pole short circuit current provided at the point of supply i.e. the fault between 1 phase and N.				Short Circuit1 Pole Power Factor Minimum State	Number	PF		Power factor of the minimum 1 pole short circuit current provided at the point of supply i.e. the fault between 1 phase and N.				Short Circuit2 Pole Minimum State	Number	Amps		Minimum 2 pole short circuit current provided at the point of supply.				Short Circuit2 Pole Power Factor Minimum State	Number	PF		Power factor of the minimum 2 pole short circuit current provided at the point of supply.				Short Circuit3 Pole Maximum State	Number	Amps		Maximum 3 pole short circuit current provided at the point of supply.				Short Circuit3 Pole Power Factor Maximum State	Number	PF		Power factor of the maximum 3 pole short circuit current provided at the point of supply.				eaker					IfcProtectiveDevice							that passes through the unit is exceeded				Breaker Type	Text			The property enumeration defines the types of breaker that may be specified within the property set.				Atex Verified	Logical		True or False	An indication whether the tripping unit is verified to be applied in EX-environment or not.				Limiting Terminal Size	Text	Circular Mils (KCM)		The maximum terminal size capacity of the device.				Old Device	Logical	(Reivi)	True or False	Indication whether the protection_ unit is out-dated or not. If not out-dated, the device is still for sale.				Standard	Text			The designation of the standard applicable for the definition of the characteristics of the tripping unit.				Use In Discrimination	Logical		True or False	An indication whether the time/current tripping information can be applied in a discrimination analysis or not.				Curve				A coherent set of attributes representing a curve for let-through energy of a protective device.				Breaker Unit Curve	Number, 2-16	Amps		A curve that establishes the let through energy of a breaker unit when a particular prospective current is applied.					digits,	ļ							Cartesian								Coord Set							Nominal Current	Number	Amps		A set of nominal currents in [A] for which the data of this instance is valid.				Voltage Level	Number	Volts		The voltage levels of the protective device for which the data of the instance is valid.				Fuse Curve				A coherent set of attributes representing curves for melting- and breaking-energy of a fuse.				Breaker Unit Fuse Breaking Curve	Number, 2-8	Amps		The let through breaking energy of a breaker unit when a particular prospective breaking current is applied.					digits,								Cartesian Coord Set							Breaker Unit Fuse Melting Curve	Number, 2-8	Amps		A curve that establishes the energy required to melt the fuse of a breaker unit when a particular prospective melting					digits,			current is applied.					Cartesian								Coord Set							Voltage Level	Number	Volts		The voltage levels of the fuse for which the data of the instance is valid. More than one value may be selected in the enumeration.				IPI Curve				A coherent set of attributes representing curves for let-through currents of a protective device.				Breaker Unit I P I Curve	Number, 2-16	Amps		The let through peak current of a breaker unit when a particular prospective current is applied.					digits,								Cartesian								Coord Set							Nominal Current	Number	Amps		A set of nominal currents in [A] for which the data of this instance is valid. At least one value shall be provided.				Voltage Level	Number	Volts		The voltage level of the protective device for which the data of the instance is valid. More than one value may be selected in the enumeration.				Breaker Capacity				A coherent set of attributes representing the breaking capacities of an MCB.				I C N60898	Number	Amps		The nominal breaking capacity in [A] for an MCB tested in accordance with the IEC 60898 series.				I C S60898	Number	Amps		The service breaking capacity in [A] for an MCB tested in accordance with the IEC 60898 series.							1	2 - F - F - F - F - F - F - F - F - F -	<u> </u>			I C S60947	Number	Amps		The service breaking capacity in [A] for an MCB tested in accordance with the IEC 60947 series.			--	------------------------	--------------	-----------------------------	--	--		I C U60947	Number	Amps		The ultimate breaking capacity in [A] for an MCB tested in accordance with the IEC 60947 series.			Nominal Currents	Number	Amps		A set of nominal currents in [A] for which the data of this instance is valid. At least one value shall be provided.					·					Power Loss	Number	Watts		The power loss in [W] per pole of the MCB when the nominal current is flowing through the MCB.			Voltage Level	Number	Volts		The voltage levels for which the data of the instance is valid. More than one value may be selected in the enumeration.			Motor Protection				A coherent set of attributes representing different capacities of a a motor protection device, defined in accordance with			Wilder Froteetion				IEC 60947.			I C M60947	Number	Amps		The making capacity in [A] for a circuit breaker or motor protection device tested in accordance with the IEC 60947 series.										I C S60947	Number	Amps		The service breaking capacity in [A] for a circuit breaker or motor protection device tested in accordance with the IEC			I C U60947	Number	Amps		60947 series. The ultimate breaking capacity in [A] for a circuit breaker or motor protection device tested in accordance with the IEC			1 C 000347	Number	Allips		60947 series.			I C W60947	Number	Amps		The thermal withstand current in [A] for a circuit breaker or motor protection device tested in accordance with the IEC							60947 series. The value shall be related to 1 s.			Performance Classes	Text		B, C, N, S, H, L, V	A set of designations of performance classes for the breaker unit for which the data of this instance is valid.			Voltage Level	Number	Volts		The voltage levels for which the data of the instance is valid. More than one value may be selected in the enumeration.			Characteristics				Properties that are applied to an occurrence of a protective device.			Ground Fault Current Set Value	Number	Amps		Ground fault current set value. The set value of the ground tripping current if adjustable.			Ground Fault Function	Logical	·	True or False	A flag indicating that the ground fault function of the device is used.			Ground Faulti2t Function	Logical		True or False	A flag indicating that the I2t ground fault function of the device is used.			Ground Fault Tripping Time	Number	Seconds		Ground fault tripping time. The set value of the ground fault tripping current if adjustable.			Instantaneous Current Set Value	Number	Amps		Instantaneous current set value. The set value of the instantaneous tripping current if adjustable.			Instantaneous Tripping Time	Number	Seconds		Instantaneous tripping time. The set value of the instantaneous tripping time if adjustable.			Long Time Current Set Value	Number	Amps		Long time current set value. The set value of the long time																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
tripping current if adjustable.			Long Time Delay	Number	Seconds		Long time delay. The set value of the long time time-delay if adjustable.			Long Time Function	Logical		True or False	A flag indicating that the long time function (i.e. the thermal tripping) of the device is used.			Pole Usage	Number		1,3	Pole usage.			Short Time Current Set Value Short Time Function	Number	Amps	Two or Folco	Short time current set value. The set value of the long time tripping current if adjustable.			Short Time Function Short Timei2t Function	Logical Logical		True or False True or False	A flag indicating that the short time function of the device is used. A flag indicating that the I2t short time function of the device is used.			Short Time Tripping Time	Number	Seconds	True or raise	Short time tripping time. The set value of the short time tripping time if adjustable.			Trip Curve	Trumbe.	55551145		Tripping curves are applied to thermal, thermal magnetic or MCB RCD tripping units (i.e. tripping units having type			•				property sets for thermal, thermal magnetic or MCB_RCD tripping defined). They are not applied to electronic tripping							units.			Tripping Curve	Number, 2-16	Amps		A curve that establishes the release time of a tripping unit when a particular prospective current is applied.				digits,							Cartesian Coord Set						Tripping Curve Type	Text			The type of tripping curve that is represented by the property set.			G Curve	TEXE			Tripping functions are applied to electronic tripping units (i.e. tripping units having type property sets for electronic							tripping defined). They are not applied to thermal, thermal magnetic or RCD tripping units.			Current Tolerance1	Number	Percentage		The tolerance for the current of time/current-curve in [%].			Current Tolerance2	Number	Percentage		The tolerance for the current of time/current-curve in [%] valid for times above CurrentTolereanceLimit1.			Current Tolerance Limit1	Number	Seconds		The time limit in [s] limiting the application of CurrentTolerance1, if any. If the value is set to 0, the value of the			Future of Adicate of				CurrentTolerance1 is valid for the whole time/current-curve.			External Adjusted	Logical		True or False	An indication if the ground fault protection may be adjusted according to an external current coil or not.			Is Current Tolerance Positive Only	Logical		True or False	Indication whether the value of CurrentTolerance1 is provided as a positive tolerance only or not. If not, the value is proved as a plus/minus tolerance.			Is Selectable	Logical		True or False	Indication whether the S-function can be switched off or not.			Is Time Tolerance Positive Only	Logical		True or False	Indication whether the value of TimeTolerance1 is provided as a positive tolerance only or not. If not, the value is proved				3.22.		3.5 5.1 5.1.5	as a plus/minus tolerance.			Nominal Current Adjusted	Logical		True or False	An indication if the tripping currents of the short time protection is related to the nominal current multiplied with the							actual setting of the current adjustment, if any, of the long time protection part of the protective device, or not.			Pologo Current	Number	Amas		The release current in [v In] for the initial tripping of the C function			Release Current Release Current I2t End	Number Number	Amps Amps		The release current in [x In] for the initial tripping of the S-function. The release current in [x In] for the end point of the I2t tripping curve of the G-function, if any. The value of			nelease Current IZt Lilu	Number	Ullha		ReleaseCurrenti2tEnd shall be larger than ReleaseCurrenti2tStart.			Release Current I2t Start	Number	Amps		The release current in [x In] for the start point of the I2t tripping curve of the G-function, if any.			Release Time	Number	Seconds		The release time in [s] for the initial tripping of the relevant part. This time indicates that for current lower than the							indicated release current, the tripping time will be longer than the indicated release time. The value is given as a mean							value.			Release Time I2t End	Number	Seconds		The release time in [s] for the end point of the I2 tripping curve of the G-function, if any. The value of ReleaseTimeI2tEnd							shall be lower than ReleaseTimel2tStart.			Release Time I2t Start	Number	Seconds		The release time in [s] for the start point of the I2t tripping curve of the G-function, if any.			--	------------	------------	---------------	---	--		Time Tolerance1	Number	Percentage		The tolerance for the time of time/current-curve in [%].			Time Tolerance2	Number	Percentage		The tolerance for the time of the time/current-curve in [%] valid for currents above TimeToleranceLimit1.			Time Tolerance Limit1	Number	Amps		The current limit in [x In] limiting the application of TimeTolerance1, if any. If the value is set to 0, the value of the							TimeTolerance1 is valid for the whole time/current-curve.			I Curve				Tripping functions are applied to electronic tripping units (i.e. tripping units having type property sets for electronic							tripping defined). They are not applied to thermal, thermal magnetic or RCD tripping units.							This property set represent the instantaneous time protection (I-curve) of an electronic protection device.			Current Tolerance1	Number	Percentage		The tolerance for the current of time/current-curve in [%].			Current Tolerance2	Number	Percentage		The tolerance for the current of time/current-curve in [%] valid for times above CurrentTolereanceLimit1.			Current Tolerance Limit1	Number	Seconds		The time limit in [s] limiting the application of CurrentTolerance1, if any. If the value is set to 0, the value of the							CurrentTolerance1 is valid for the whole time/current-curve.			Is Current Tolerance Positive Only	Logical		True or False	Indication whether the value of CurrentTolerance1 is provided as a positive tolerance only or not. If not, the value is							proved as a plus/minus tolerance.			Is Off When S Function On	Logical		True or False	Indication whether the I-function is automatically switched off when the S-function is switched on.			Is Selectable	Logical		True or False	Indication whether the S-function can be switched off or not.			Is Time Tolerance Positive Only	Logical		True or False	Indication whether the value of TimeTolerance1 is provided as a positive tolerance only or not. If not, the value is proved							as a plus/minus tolerance.			Max Adjustment X_ I C S	Number	Amps		Provides the maximum setting value for the available current adjustment in relation to the							Ics breaking capacity of the protection device of which the actual tripping unit is a part of.			Nominal Current Adjusted	Logical		True or False	An indication if the tripping currents of the short time protection is related to the nominal current multiplied with the							actual setting of the current adjustment, if any, of the long time protection part of the protective device, or not.										Release Current	Number	Amps		The release current in [x In] for the initial tripping of the S-function.			Release Time	Number	Seconds		The release time in [s] for the initial tripping of the relevant part.			Time Tolerance1	Number	Percentage		The tolerance for the time of time/current-curve in [%].			Time Tolerance2	Number	Percentage		The tolerance for the time of the time/current-curve in [%] valid for currents above TimeToleranceLimit1.			Time Tolerance Limit1	Number	Amps		The current limit in [x In] limiting the application of TimeTolerance1, if any. If the value is set to 0, the value of the							TimeTolerance1 is valid for the whole time/current-curve.			L Curve				Tripping functions are applied to electronic tripping units (i.e. tripping units having type property sets for electronic							tripping defined). They are not applied to thermal, thermal magnetic or RCD tripping units.							This property set represent the long time protection (L-curve) of an electronic protection device			Is Selectable	Logical		True or False	Indication whether the L-function can be switched off or not.			Lower Current1	Number	Amps		The current in [x In], indicating that for currents smaller than LowerCurrent1 the I2t part of the L-function will not trip the							current,			Lower Current2	Number	Amps		The current in [x In], indicating the upper current limit of the lower time/current curve of the I2t part of the L-function.			T. 4							Lower Time1	Number	Seconds		The time in [s], indicating that tripping times of the lower time/current curve lower than LowerTime1 is determined by the			Lower Time?	Ni mahar -	Soconds		12t part of the L-function.			Lower Time2	Number	Seconds		The time in [s], indicating the tripping times of the upper time/current curve at the LowerCurrent2.			Upper Current1	Number	Amps		The current in [x In], indicating that for currents larger than UpperCurrent1 the I2t part of the L-function will trip the			Upper Current?	M1	Amrs		Current. The current in [v la] indicating the upper current limit of the upper																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
time (current curve of the Lit part of the Lituation			Upper Current2	Number	Amps		The current in [x In], indicating the upper current limit of the upper time/current curve of the I2t part of the L-function.			Upper Time1	Number	Seconds		The time in [s], indicating that tripping times of the upper time/current curve lower than UpperTime1 is determined by the			Obbei tillet	inumber	Seconds		line time in [s], indicating that tripping times of the upper time/current curve lower than Upper lime1 is determined by the list part of the L-function.			Unner Time?	Number	Seconds		The time in [s], indicating the tripping times of the upper time/current curve at the UpperCurrent2.			Upper Time2 S Curve	ivumber	Secolus		Tripping functions are applied to electronic tripping units (i.e. tripping units having type property sets for electronic			3 cui ve				tripping defined). They are not applied to thermal, thermal magnetic or RCD tripping units.							This property set represent the short time protection (S-curve) of an electronic protection device.			Current Tolerance1	Number	Percentage		The tolerance for the current of time/current-curve in [%].			Current Tolerance2	Number	Percentage		The tolerance for the current of time/current-curve in [%] valid for times above CurrentTolereanceLimit1.			Current Tolerance2 Current Tolerance Limit1	Number	Seconds		The time limit in [s] limiting the application of CurrentTolerance1, if any. If the value is set to 0, the value of the			Current rolerance Limits	Number	Jeconus		CurrentTolerance1 is valid for the whole time/current-curve.			Is Current Tolerance Positive Only	Logical		True or False	Indication whether the value of CurrentTolerance1 is provided as a positive tolerance only or not. If not, the value is			is current foldfunde Fositive Only	Logical		True of Faise	proved as a plus/minus tolerance.			Is Off When Lfunction On	Logical		True or False	Indication whether the S-function is automatically switched off when the I-function is switched on.			Is Selectable	Logical		True or False	Indication whether the S-function can be switched off or not.			Is Time Tolerance Positive Only	Logical		True or False	Indication whether the value of TimeTolerance1 is provided as a positive tolerance only or not. If not, the value is proved			13 Time Tolerance Positive Only	Logical		True or raise	as a plus/minus tolerance.			Nominal Current Adjusted	Logical		True or False	An indication if the tripping currents of the short time protection is related to the nominal current multiplied with the			Nominal Carrent Aujustea	Logical		True or raise	actual setting of the current adjustment, if any, of the long time protection part of the protective device, or not.							2. The same as a same as a same as a same and a same protection part of the protective device, of field			Release Current	Number	Amps		The release current in [x In] for the initial tripping of the S-function.					'		The release current in [x In] for the end point of the I2t tripping curve of the S-function, if any. The value of			Release Current I2t End	Numher	Amps					Release Current I2t End	Number	Amps		ReleaseCurrent12tEnd shall be larger than ReleaseCurrent12tStart.			Release Time	Number	Seconds		The release time in [s] for the initial tripping of the relevant part. This time indicates that for current lower than the			-------------------------------------	---------	-------------	---	---	--						indicated release current, the tripping time will be longer than the indicated release time. The value is given as a mean value.			Release Time I2t End	Number	Seconds		The release time in [s] for the end point of the I2 tripping curve of the S-function, if any. The value of ReleaseTimeI2tEnd shall be lower than ReleaseTimeI2tStart.			Release Time I2t Start	Number	Seconds		The release time in [s] for the start point of the I2t tripping curve of the S-function, if any			Time Tolerance1	Number	Percentage		The tolerance for the time of time/current-curve in [%].			Time Tolerance2	Number	Percentage		The tolerance for the time of the time/current-curve in [%] valid for currents above TimeToleranceLimit1.			Time Tolerance Limit1	Number	Amps		The current limit in [x In] limiting the application of TimeTolerance1, if any. If the value is set to 0, the value of the							TimeTolerance1 is valid for the whole time/current-curve.			Current Adjustment Values	T			A set of current adjustment values that may be applied to an electronic or thermal tripping unit type.			Adjustment Designation	Text	A		The designation on the device for the adjustment.			Adjustment Range	Number	Amps		Upper and lower current adjustment limits for an AdjustmentValueType = RANGE. Note that this property should not have a value for an AdjustmentValueType = LIST.			Adjustment Range Step Value	Number	Amps		Step value of current adjustment for an AdjustmentValueType = RANGE. Note that this property should not have a value for an AdjustmentValueType = LIST.			Adjustment Values	Number	Amps		A list of current adjustment values that may be applied to a tripping unit for an AdjustmentValueType = LIST.			Adjustment Value Type	Text			The type of adjustment value that is applied through the property set. This determines the properties that should be asserted.			Time Adjustment Values				A set of time adjustment values that may be applied to an electronic or thermal tripping unit type.			Adjustment Designation	Text			The designation on the device for the adjustment.			Adjustment Range	Number	Seconds		Upper and lower time adjustment limits for an AdjustmentValueType = RANGE			Adjustment Range Step Value	Number	Seconds		Step value of time adjustment for an AdjustmentValueType = RANGE			Adjustment Values	Number	Seconds		A list of time adjustment values that may be applied to a tripping unit for an AdjustmentValueType = LIST.			Adjustment Value Type	Text			The type of adjustment value that is applied through the property set			Current For Time Delay	Number	Amps		The tripping current in [x In] at which the time delay is specified			I2 T Applicability	Logical			The applicability of the time adjustment related to the tripping function.			Electro Magnetic Type				Information on tripping units that are electrically or magnetically tripped.			Curve Designation	Text	5.6		The designation of the trippingcurve given by the manufacturer			Defined Temperature	Number	Degrees F/C		The ambient temperature at which the thermal current/time-curve associated with this protection device is defined.			Electro Magnetic Tripping Unit Type	Text		Overload, none special, short circuit, motor protection and bi-metal tripping	A list of the available types of electric magnetic tripping unit from which that required may be selected.			11	Number	Amps		The (thermal) lower testing current limit in [x In], indicating that for currents lower than I1, the tripping time shall be longer than the associated tripping time, T2.			12	Number	Amps		The (thermal) upper testing current limit in [x In], indicating that for currents larger than I2, the tripping time shall be shorter than the associated tripping time, T2.			14	Number	Amps		The lower electromagnetic testing current limit in [x In], indicating that for currents lower than I4, the tripping time shall be longer than the associated tripping time, T5, i.e. the device shall not trip instantaneous.			15	Number	Amps		The upper electromagnetic testing current limit in [x In], indicating that for currents larger than I5, the tripping time shall be shorter than or equal to the associated tripping time, T5, i.e. the device shall trip instantaneous.			T2	Number	Seconds		The (thermal) testing time in [s] associated with the testing currents I1 and I2.			T5	Number	Seconds		The electromagnetic testing time in [s] associated with the testing currents I4 and I5, i.e. electromagnetic tripping time			Temperature Factor	Text			The correction factor (typically measured as %/deg K) for adjusting the thermal current/time to an ambient temperature			·				different from the value given by the defined temperature.			Electronic Type				Information on tripping units that are electronically tripped.			Electronic Tripping Unit Type	Text			A list of the available types of electronic tripping unit from which that required may be selected.			N_ Protection	Logical			An indication whether the electronic tripping unit has separate protection for the N conductor, or not.			N_ Protection_100	Logical			An indication whether the electronic tripping unit is tripping if the current in the N conductor is more than 100% of that of the phase conductors.			N_ Protection_50	Logical			An indication whether the electronic tripping unit is tripping if the current in the N conductor is more than 50% of that of the phase conductors.			N_ Protection_ Select	Logical		True or False	An indication whether the use of the N_Protection can be selected by the user or not.			Nominal Currents	Number			A set of values providing information on available modules (chips) for setting the																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
nominal current of the protective device.			Residual Current				Information on tripping units that are activated by residual current.			Tripping Unit Release Current	Number	mA		The value of tripping or residual current for which the device has the possibility to be equipped. The values are given in mA.			Thermal Type				Information on tripping units that are thermally tripped.			Curve Designation	Text			The designation of the trippingcurve given by the manufacturer. For a MCB the designation should be in accordance with the designations given in IEC 60898.			Defined Temperature	Number	Degrees C		The ambient temperature at which the thermal current/time-curve associated with this protection device is defined.				-1	·	i i					11	Number	Amps		The (thermal) lower testing current limit in [x In], indicating that for currents lower than I1, the tripping time shall be			-----	--	------------------	----------------	--	---	------------------------------					·		longer than the associated tripping time, T2.				12	Number	Amps		The (thermal) upper testing current limit in [x In], indicating that for currents larger than I2, the tripping time shall be				72		6 1		shorter than the associated tripping time, T2.				T2	Number	Seconds		The (thermal) testing time in [s] associated with the testing currents I1 and I2.				Temperature Factor	Text			The correction factor (typically measured as %/deg K) for adjusting the thermal current/time to an ambient temperature different from the value given by the defined temperature.				Thermal Tripping Unit Type	Text			A list of the available types of thermal tripping unit from which that required may be selected.				Circuit Breaker Type				A coherent set of attributes representing different capacities of a circuit breaker or of a motor protection device, defined				**************************************				in accordance with IEC 60947.				I C M60947	Number	Amps		The making capacity in [A] for a circuit breaker or motor protection device tested in accordance with the IEC 60947 series.												I C S60947	Number	Amps		The service breaking capacity in [A] for a circuit breaker or motor protection device tested in accordance with the IEC				LC UC0047	Number	A mam a		60947 series.				I C U60947	Number	Amps		The ultimate breaking capacity in [A] for a circuit breaker or motor protection device tested in accordance with the IEC 60947 series.				I C W60947	Number	Amps		The thermal withstand current in [A] for a circuit breaker or motor protection device tested in accordance with the IEC								60947 series. The value shall be related to 1 s.				Performance Classes	Text		B, C, N, S, H, L, V	A set of designations of performance classes for the breaker unit for which the data of this instance is valid.				Voltage Level	Number	Volts		The voltage levels for which the data of the instance is valid. More than one value may be selected in the enumeration.				Correct Freeh Trees				As south failure device which quadrature and a six of the first state				Ground Fault Type	Tout			An earth failure device acts to protect people and equipment from the effects of current leakage.				Earth Failure Device Type Sensitivity	Text Number	Amps (RMS)		A list of the available types of circuit breaker from which that required may be selected The rated rms value of the vector sum of the instantaneous currents flowing in the main circuits of the device which causes				Scholary	ivallibel	(נואוט) לעוואס		the device to operate under specified conditions.				Fuse Disconnect Type				A coherent set of attributes representing the breaking capacity of a fuse, defined in accordance with IEC 60269.								, , , , , , , , , , , , , , , , , , , ,				Fuse Disconnector Type	Text		EngineProtectionDevice,	A list of the available types of fuse disconnector from which that required may be selected							FuseSwitchDisconnector,								HRC,								OverloadProtectionDevice, SemiconductorFuse,								SwitchDisconnectorFuse					I C60269	Number	Amps	3 Witch Disconnector asc	The breaking capacity in [A] for fuses in accordance with the IEC 60269 series.				Power Loss	Number	Watts		The power loss in [W] of the fuse when the nominal current is flowing through the fuse.				Voltage Level	Number	Volts		The voltage levels for which the data of the instance is valid. More than one value may be selected in the enumeration.												Current Circuit Breaker				A residual current circuit breaker opens, closes or isolates a circuit and has short circuit and overload protection.				Sensitivity	Number	Amps		Current leakage to an unwanted leading path during normal operation (IEC 151-14-49).				Current Switch	rumber	741105		A residual current switch opens, closes or isolates a circuit and has no short circuit or overload protection.				Sensitivity	Number	Amps		Current leakage to an unwanted leading path during normal operation (IEC 151-14-49).				Variable Resistor		·		A high voltage surge protection device.				Varistor Type	Text			A list of the available types of varistor from which that required may be selected.			Dis	ribution Board				A distribution board is a flow controller in which instances of electrical devices are brought together at a single place for	IfcElectricDistributionBoard							a particular purpose.				Main or Sub Main	Logical		True or False	Identifies if the current instance is a main distribution point or topmost level in an electrical distribution hierarchy				Requires Qualifies Operator	Logical		True or False	Identifies if the current instance requires a skilled person or instructed person to perform operations on the distribution				neganes quantes operator	Logical		Tide Of False	board			Ele	ctrical Appliance					IfcElectricAppliance			Power Status	Logical		True or False	Indicates the power state of the device where True is on and False is off.			Ele	ctric Motor				Defines a particular type of machine for converting mechanical energy into electrical energy.	IfcElectricMotor			Motor Type	Text			The property enumeration defines the types of motor that may be specified within the property set.				Electric Motor Efficiency	Number	Ratio		The ratio of output capacity to intake capacity.				Frame Size	Text		B, C, D	Designation of the frame size according to the named range of frame sizes				Has Part Winding	Logical		True or False	Indication of whether the motor is single speed, i.e. has a single winding				Is Guarded	Logical	Amns	True or False	Indication of whether the motor enclosure is guarded				Locked Rotor Current Maximum Power Output	Number Number	Amps KW		Input current when a motor armature is energized but not rotating. The maximum output power rating of the engine.				Motor Enclosure Type	Text	NVV	ODP, TEFC, TENV	A list of the available types of motor enclosure from which that required may be selected.				Start Current Factor	Number		ODF, ILIC, ILIV	StartCurrentFactor is multiplied to NominalCurrent and to give the start current.				Starting Time	Number	Seconds		The time (in s) needed for the motor to reach its rated speed with its driven equipment attached, starting from standstill				-				and at the nominal voltage applied at its terminals.				Te																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
Time	Number	Seconds		The maximum time (in s) at which the motor could run with locked rotor when the motor is used in an EX-environment.											Ge	nerator				Defines a particular type of machine for converting mechanical energy into electrical energy.	IfcElectricGenerator			I								------	-------------------------------	------------	------------	----	--------------------------	--	--------------------			Generator Type	Text				The property enumeration defines the types of generator that may be specified within the property set.				Electric Generator Efficiency	Number	Ratio			The ratio of output capacity to intake capacity.				Maximum Power Output	Number	KW			The maximum output power rating of the engine.				Start Current Factor	Number				StartCurrentFactor is multiplied to NominalCurrent and we get the start current.				ction Box					·····	IfcJunctionBox			Junction Box Type	Text				The property enumeration defines the types of junction box that may be specified within the property set.				Clear Depth	Number	Inch/mm			Clear unobstructed depth available for cable inclusion within the junction box.				I P_ Code	Text				IEC 60529 (1989) Classification of degrees of protection provided by enclosures (IP Code).				Is External	Logical			True or False	Indication of whether the junction box type is allowed for exposure to outdoor elements				Mounting Type	Text			Surface, Flush	Method of mounting to be adopted for the type of junction box.				Number Of Gangs	Number			1,2,3,4	Number of slots available for switches/outlets (most commonly 1, 2, 3, or 4).				Placing Type	Text				Location at which the type of junction box can be located.				Shape Type	Text			Square, Round	Shape of the junction box.			Lan	np					A lamp is an artificial light source such as a light bulb or tube.	IfcLamp			Lamp Box Type	Text				The property enumeration defines the types of lamp that may be specified within the property set.				Color Appearance	Number				In both the DIN and CIE standards, artificial light sources are classified in terms of their color appearance.				Color Rendering Index	Number	CRI		1-100	The CRI indicates how well a light source renders eight standard colors compared to perfect reference lamp with the same				oolor nemering much				1 100	color temperature.				Color Temperature	Number	Kelvin		3000-4100	The color temperatures of the commonest artificial light sources range from less than 3000K (warm white) to 4000K								3000 .200	(intermediate) and over 5000K (daylight).				Contributed Luminous Flux	Number	Lumens			Luminous flux is a photometric measure of radiant flux, i.e. the volume of light emitted from a light source.				Lamp Ballast Type	Text	200115		EC-A, EC-B	The type of ballast used to stabilize gas discharge by limiting the current during operation and to deliver the necessary				Early Buildst Type	TOAL			LC A, LC-D	striking voltage for starting.				Lamp Compensation Type	Text				Identifies the form of compensation used for power factor correction and radio suppression.				Lamp Maintenance Factor	Number				Non recoverable losses of luminous flux of a lamp due to lamp depreciation; i.e. the decreasing of light output of a				Lamp Maintenance ractor	Mannagi				luminaire due to aging and dirt.				Light Emitter Nominal Power	Number	Watts			Light emitter nominal power.								200 700000					Spectrum	Number	nm		380-780nm	The spectrum of radiation describes its composition with regard to wavelength.	If-I :-hap:		Ligi	ht Fixture	T4			Confess Deserted Mail	A light fixture that is considered to have a length or surface area from which it emits light in a direction	IfcLightFixture			Light Fixture Mounting Type	Text			Surface, Recessed, Wall,	A list of the available types of mounting for light fixtures from which that required may be selected.				Links Finture Dispire True	T			Pendant	A list of the position is a second state of a list of the second state s				Light Fixture Placing Type	Text				A list of the available types of placing specification for light fixtures from which that required may be selected.				Maintenance Factor	Number				The arithmetical allowance made for depreciation of lamps and reflective equipment from their initial values due to dirt,				Infantenance Factor	Nullibei								Maximum Planum Consible Load	Number	\M/atts			fumes, or age. Maximum or Deak consider thermal lead contributed to return air planum by the light fixture.				Maximum Plenum Sensible Load		Watts			Maximum or Peak sensible thermal load contributed to return air plenum by the light fixture.				Maximum Space Sensible Load	Number	Watts			Maximum or Peak sensible thermal load contributed to the conditioned space by the light fixture.				Number Of Sources	Number				Number of sources .				Sensible Load To Radiant	Number	Percentage			Percent of sensible thermal load to radiant heat.				Total Wattage	Number	Watts			Wattage on whole lightfitting device with all sources intact.			Ou	tlet					An outlet is a device installed at a point to receive one or more inserted plugs for electrical power or communications.	IfcOutlet			Outlet Time	Tairt				The property any properties defines the types of entire that the types of entire the property of the types of entire type				Outlet Type	Text			T 5 1	The property enumeration defines the types of outlet that may be specified within the property set.				Is Pluggable Outlet	Logical			True or False	Indication of whether the outlet accepts a loose plug connection				Number Of Sockets	Number				The number of sockets that may be connected. In case of inconsistency, sockets defined on ports take precedence.					- .								Reference	Text				Reference ID for this specified type in this project (e.g. type 'A-1')	15 11 1 mm .		Sec	urity Light						IfcLightFixture			le					emergency flood light.				Security Light Type	Text				The property enumeration defines the types of security light that may be specified within the property set.				Addressability	Text				The type of addressability.				Backup Supply System	Text				The type of backup supply system.				Fixture Height	Numeric	Inch	mm		The height of the fixture, such as the text height of an exit sign.				Pictogram Escape Direction	Text				The direction of escape pictogram.				Security Lighting Type	Text				The type of security lighting.				Self Test Function	Text				The type of self test function.			Swi	itch					A switch is used in a cable distribution system (electrical circuit) to control or modulate the flow of electricity	IfcSwitchingDevice			Switch Type	Text				The property enumeration defines the types of switch that may be specified within the property set.				Has Lock	Logical			True or False	Indication of whether a switching device has a key operated lock				Is Illuminated	Logical			True or False	An indication of whether there is an illuminated indicator to show that the switch is on				Legend	Text				A text inscribed or applied to the switch as a legend to indicate purpose or function.				Number Of Gangs	Number			1,2,3,4	Number of gangs/buttons on this switch.				Set Point	Logical			0,1	Indicates the setpoint and																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
label. For toggle switches, there are two positions, 0 for off and 1 for on.				Switch Function	Text			0,1	Indicates the serpoint and laber. For toggie switches, there are two positions, o for on and 1 for on.				Contact	TEAL				An electrical device used to control the flow of power in a circuit on or off.				I Ontact					IT THE CHECK HOUR WE VICE USED TO CONTROL THE HOW OF DOWER HIS A CHECKIL OF OF OTHER				Contactor Type	Text		CapacitorSwitching,	A list of the available types of contactor from which that required may be selected			------	---	--	---	------------------------------	--	--------------------------------						LowCurrent,								MagneticLatching,								MechanicalLatching,								Modular, Reversing,								Standard					Dimmer				A dimmer switch is a switch that adjusts electrical power through a variable position level action.				Dimmer Type	Text			A list of the available types of dimmer switch from which that required may be selected.				1	Text							Emergency Stop				An emergency stop device acts to remove as quickly as possible any danger that may have arisen unexpectedly.												Switch Operation	Logical		True or False	Indicates operation of emergency stop switch.				Keypad				A keypad is a switch supporting multiple functions.				Keypad Type	Text			A list of the available types of keypad switch from which that required may be selected.				Momentary				A momentary switch is a switch that does not hold state.				Momentary Type	Text			A list of the available types of momentary switch from which that required may be selected.				Set Point	Logical		0,1	Indicates the switch position over time				Selector	- 5		-,	A selector switch is a switch that adjusts electrical power through a multi-position action.				Selector Type	Text			A list of the available types of selector switch from which that required may be selected.												Switch Activation	Text			A list of the available activations for selector switches from which that required may be selected.				Switch Usage	Text			A list of the available usages for selector switches from which that required may be selected.				Starter				A starter is a switch which in the closed position controls the application of power to an electrical device.				Starter Type	Text		AutoTransformer, Manual,	A list of the available types of starter from which that required may be selected							DirectOnLine, Frequency,								nStep, Rheostatic, StarDelta													Disconnect				A switch disconnector is a switch which in the open position satisfies the isolating requirements specified for a								disconnector.				Load Disconnection Type	Text			A list of the available types of load disconnection from which that required may be selected.				**			CenterBreak,					Switch Disconnector Type	Text		•	A list of the available types of switch disconnector from which that required may be selected							DividedSupport,								DoubleBreak,																EarthingSwitch, Isolator					Toggle			EarthingSwitch, Isolator	A toggle switch is a switch that enables or isolates electrical power through a two position on/off action.				Toggle Switch Activation	Text		EarthingSwitch, Isolator	A toggle switch is a switch that enables or isolates electrical power through a two position on/off action. A list of the available activations for toggle switches from which that required may be selected.					Text Text		EarthingSwitch, Isolator					Switch Activation			EarthingSwitch, Isolator	A list of the available activations for toggle switches from which that required may be selected.				Switch Activation Switch Usage	Text		EarthingSwitch, Isolator	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type ssformer	Text Text		EarthingSwitch, Isolator	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Isformer Transformer Type	Text Text Text	Patio	EarthingSwitch, Isolator	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type ssformer	Text Text	Ratio	EarthingSwitch, Isolator	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Isformer Transformer Type	Text Text Text	Ratio	EarthingSwitch, Isolator	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Insformer Transformer Type Imaginary Impedance Ratio	Text Text Text Number																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Ratio		A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Insformer Transformer Type Imaginary Impedance Ratio	Text Text Text Number Logical	Ratio	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Instrument Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available	Text Text Text Number Logical Logical			A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Instrument Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power	Text Text Text Number Logical Logical Number	VA	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Instrument Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available	Text Text Text Number Logical Logical		True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Instrument Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power	Text Text Text Number Logical Logical Number	VA	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Insformer Transformer Type Imaginary Impedance Ratio Its Neutral Primary Terminal Available Its Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power	Text Text Text Number Logical Logical Number Number	VA VA	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Its Neutral Primary Terminal Available Its Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Current Primary Frequency	Text Text Text Number Logical Logical Number Number Number	VA VA Amps	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The frequency that is going to be transformed and that runs into the transformer on the primary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Current Primary Frequency Primary Voltage	Text Text Number Logical Logical Number Number Number Number Number																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
VA VA Amps Hertz Volts	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The requency that is going to be transformed and that runs into the transformer on the primary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Its Neutral Primary Terminal Available Its Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Current Primary Frequency	Text Text Number Logical Logical Number Number Number Number	VA VA Amps Hertz	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The requency that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Current Primary Frequency Primary Voltage	Text Text Number Logical Logical Number Number Number Number Number	VA VA Amps Hertz Volts	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The requency that is going to be transformed and that runs into the transformer on the primary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Current Primary Frequency Primary Voltage Real Impedance Ratio	Text Text Number Logical Logical Number Number Number Number Number Number	VA VA Amps Hertz Volts Ratio	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The requency that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Current Primary Frequency Primary Voltage	Text Text Number Logical Logical Number Number Number Number Number	VA VA Amps Hertz Volts	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The requency that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Current Primary Frequency Primary Voltage Real Impedance Ratio	Text Text Text Number Logical Logical Number Number Number Number Number Number Number Number	VA VA Amps Hertz Volts Ratio	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The requency that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current	Text Text Text Number Logical Logical Number Number Number Number Number Number Number Number Number	VA VA Amps Hertz Volts Ratio	True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The rollage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. The current that has been transformed and is running out of the transformer on the secondary side.	IfcTransformer IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Secondary Current Type	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer output.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current	Text Text Text Number Logical Logical Number Number Number Number Number Number Number Number Number	VA VA Amps Hertz Volts Ratio VA Amps	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The rollage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. The current that has been transformed and is running out of the transformer on the secondary side.	IfcTransformer IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Secondary Current Type	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer output.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Type Secondary Frequency	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer output. The frequency that has been transformed and is running out of the transformer on the secondary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Type Secondary Frequency Secondary Voltage	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps Hertz Volts VA	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer output. The frequency that has been transformed and is running out of the transformer on the secondary side.	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Secondary Current Type Secondary Frequency Secondary Voltage Short Circuit Voltage	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps Hertz Volts VA	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switch from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. The current that has been transformed and is running out of the transformer on the secondary side. The frequency that has been transformed and is running out of the transformer on the secondary side. The frequency that has been transformed and is running out of the transformer on the secondary side. The voltage that has been transformed and is running out of the transformer on the secondary side. The vo	IfcTransformer IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Type Secondary Frequency Secondary Voltage	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps Hertz Volts VA	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. The current that has been transformed and is running out of the transformer on the secondary side. The requency that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer on the secondary side. The voltage that has been transformed and is running out of the transformer on the secondary side. The voltage	IfcTransformer IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Secondary Current Type Secondary Frequency Secondary Voltage Short Circuit Voltage	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps Hertz Volts VA	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. The current that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer output. The frequency that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer on the secondary side. A complex number that specifies the real and imaginary parts of the short-circuit voltage at rated current of a transformer giv	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Secondary Current Type Secondary Frequency Secondary Voltage Short Circuit Voltage	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps Hertz Volts VA	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal An indication of whether the neutral point of the secondary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The requency that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer output. The frequency that has been transformed and is running out of the transformer on the secondary side. A complex number that specifies the real and imaginary parts of the short-circuit voltage at rated current of a transformer given in	IfcTransformer		Trai	Switch Activation Switch Usage Toggle Switch Type Informer Transformer Type Imaginary Impedance Ratio Is Neutral Primary Terminal Available Is Neutral Secondary Terminal Available Maximum Apparent Power Primary Apparent Power Primary Frequency Primary Voltage Real Impedance Ratio Secondary Apparent Power Secondary Current Secondary Current Secondary Current Secondary Current Type Secondary Frequency Secondary Voltage Short Circuit Voltage	Text Text Text Number Logical Logical Number	VA VA Amps Hertz Volts Ratio VA Amps Hertz Volts VA	True or False True or False	A list of the available activations for toggle switches from which that required may be selected. A list of the available usages for toggle switches from which that required may be selected. A list of the available types of toggle switch from which that required may be selected. A transformer is an inductive stationary device that transfers electrical energy from one circuit to another. The property enumeration defines the types of transformer that may be specified within the property set. The ratio between the imaginary part of the zero sequence impedance and the imaginary part of the positive impedance (i.e. imaginary part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. An indication of whether the neutral point of the primary winding is available as a terminal Maximum apparent power/capacity in VA The power in VA that has been transformed and that runs into the transformer on the primary side. The current that is going to be transformed and that runs into the transformer on the primary side. The voltage that is going to be transformed and that runs into the transformer on the primary side. The ratio between the real part of the zero sequence impedance and the real part of the positive impedance (i.e. real part of the short-circuit voltage) of the transformer. Used for three-phase transformer which includes a N-conductor. The power in VA (volt ampere) that has been transformed and is running out of the transformer on the secondary side. The current that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer output. The frequency that has been transformed and is running out of the transformer on the secondary side. A list of the secondary current types that can result from transformer on the secondary side. A complex number that specifies the real and imaginary parts of the short-circuit voltage at rated current of a transformer giv	IfcTransformer		ct-Specific N											---------------	-----------	---	--	--	------	--	----------	---	---		LEED Cert.											Check	Submittal																																																																																																																																																																																																																																																																																																																																																																																																					 							1	l			l		<u> </u>	L	L		 									------	---	----	---	----	------	---	--																																																																																																																																																																																																																																																																																																																																																																																																																																					 																																																																																																																i	i	T.	i	T.	i	1						T	T		T	T		--	------	---	---	---	----------	----------	---																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
																																																																																									 																																																																																																																																																																																																																																																																																																																																					ļ	ļ		<u> </u>	<u> </u>								,		--	---	---	------	--	---																																																																																																																																															-	-																																																																																																																																																																																																																																								 																																										I			ı					--	------	---	---	---	---	---	---	---	--																																																																																																																																																																																																																																																					 						-																																																																																																																																																																																																																						-																																																																																																				_		_	_			_																																					-																																																						1	1	1	1	I .	1	1			---	---	---	---	-----	---	---	--	## **D** - Electrical Distribution Baseline This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License Part 1 - Attribute Description Part 3 - Example Proje	Additional <u>License</u>								Estimating	Estimating		------------------------------------	------------	---------------	----------------	--------------------------	--	------------------------	-----------	------------	------------			Data Type	Units - Imp.	Units - Metric	Option Examples	Commentary	IFC Name	COBie Tag	Est. 1	Bid Pkg.		Global Attributes	71	'		'							Target LOD	Text			100, 200, 300, 350, 400							Current LOD	Text			100, 200, 300, 350, 400							Item-Specific Attributes	· exe			200, 200, 300, 300, 100							Cable Management						IfcCableCarrierSegment					Condition Status	Text		
stalldard. | | | | | | Halogen Proof | Logic | | | True or False | Produces small amount of smoke and irritating Deaerator/Gas. | | | | | | Has Protective Earth | Logic | | | True or False | One core has protective earth marked insulation, Yellow/Green. | | | | | | Maximum Operating Temperature | Number | Degrees F | Degrees C | True OF Faise | The maximum temperature at which a cable or bus is certified to operate. | | | | | | Maximum Short Circuit Temperature | Number | Degrees F | Degrees C | | The maximum short circuit temperature at which a cable or bus is certified to operate. | | | | | | Number Of Cores | Number | הפצובבי נ | Deglees C | | The number of cores in Cable/Bus. | | | | | | Number of cores | ivumber | | | | The number of Cores III Cable/ bus. | | | | | | | Overall Diameter | Number | Inch | mm | | The overall diameter of a Cable/Bus. | | |-------|---------------------------|------------|--------------------------|-----------|-----------------|--|--| | | Rated Temperature | Number | Degrees F | Degrees C | | The range of allowed temperature that a device is certified to handle. The upper bound of this value is the maximum. | | | | Kateu Temperature | Number | Degrees F | Degrees C | | The range of allowed temperature that a device is certified to fiabline. The upper bound of this value is the maximum. | | | | Rated Voltage | Number | Volts | | | The range of allowed voltage that a device is certified to handle. The upper bound of this value is the maximum. | | | | Screen Diameter | Number | Inch | mm | | The diameter of the screen around a cable or bus segment (if present). | | | | Self Extinguishing60332 1 | Logic | men | | True or False | Self Extinguishing cable/core according to IEC 60332.1. | | | | Self Extinguishing60332_3 | Logic | | | True or False | Self Extinguishing cable/core according to IEC 60332.3. | | | | Special Construction | Text | | | True or ruise | Special construction capabilities like self-supporting, flat dividable cable or bus flat non dividable cable or bus supporting | | | | • | | | | | elements inside | | | | Standard | Text | | | | The designation of the standard applicable for the definition of the Cable/Bus used. | | | | Weight | Number | Lbs | Kgs | | Weight of cable kg/km. | | | E | lectrical Conductor | | | | | An electrical conductor is a single linear element with the specific purpose to lead electric current. | | | | Construction | Text | | | Solid, Stranded | Purpose of informing on how the conductor is constructed (intertwined or solid). I.e. Solid (IEV 461-01-06), stranded (IEV | | | | Constituted August | Nicosalese | Cinculan Mila | | | 461-01-07), solid-/finestranded(IEV 461-01-11) (not flexible/flexible). | | | | Cross Sectional Area | Number | Circular Mils
(kcmil) | | | Cross section area of the phase(s) lead(s). | | | | Function | Text | | | | Type of function for which the conductor is intended. | | | | Material | Text | | | | Type of material from which the conductor is constructed. | | | | Shape | Text | | | | Indication of the shape of the conductor. | | | lı lı | nsulated Conductor | | | | | An assembly comprising a conductor with its own insulation (and screens if any) | | | | Core Identifier | Text | | | | The core identification used Identifiers may be used such as by color (Black, Brown, Grey) or by number (1, 2, 3) or by IEC | | | | | | | | | phase reference (L1, L2, L3) etc. | | | | Function Reliable | Logic | | | True or False | Core maintain given properties/functions over a given (tested) time and conditions. According to (IEC) standard. | | | | Halogen Proof | Logic | | | True or False | Produces small amount of smoke and irritating deaerator/gas. | | | | Overall Diameter | Number | Inch | mm | | The overall diameter of a core (maximum space used). | | | | Rated Temperature | Number | Degrees F | Degrees C | | The range of allowed temperature that a device is certified to handle. The upper bound of this value is the maximum. | | | | Rated Voltage | Number | Volts | | | The range of allowed voltage that a device is certified to handle. The upper bound of this value is the maximum. | | | | Screen Diameter | Number | Inch | mm | | The diameter of the screen around a core segment (if present). | | | | Self Extinguishing60332_1 | Logic | | | True or False | Self Extinguishing cable/core according to IEC 60332.1. | | | | Self Extinguishing60332_3 | Logic | | | True or False | Self Extinguishing cable/core according to IEC 60332.3. | | | | Sheath Colors | Text | | | | Colour of the core (derived from IEC 60757). | | | | Standard | Text | | | | The designation of the standard applicable for the definition of the core used. | | | | Weight | Number | Lbs | Kgs | | Weight of core kg/km. | | | | Power State | Logic | | | 0,1 | Indicates the power state of the device where True is on and False is off. | | | E | lectrical Properties | | | | | | | | | Conductor Function | Text | | | | Function of a line conductor to which a device is intended to be connected where L1, L2 and L3 represent the phase lines according to IEC 60446 notation | | | | Has Protective Earth | Logic | | | True or False | Indicates whether the electrical device has a protective earth connection | | | | Insulation Standard Class | Text | | | | Insulation standard classes provides basic protection information against electric shock. Defines levels of insulation | | | | | | | | | required in terms of constructional requirements | | | | I P_ Code | Text | | | | IEC 60529 Classification of degrees of protection provided by enclosures (IP Code). | | | | Nominal Frequency Range | Number | Hertz | | | The upper and lower limits of frequency for which the operation of the device is certified. | | | | Number Of Poles | Number | | | | The number of live lines that is intended to be handled by the device. | | | | Power Factor | Number | Ratio | | | The ratio between the rated electrical power and the product of the rated current and rated voltage | | | | Rated Current | Number | Amps | | | The current that a device is designed to handle. | | | | Rated Voltage | Number | Volts | | | The voltage that a device is designed to handle. | | | ct-Specific N | /lilestones | | | | | | |---------------|-------------|--|--|--|--|--| | LEED Cert. | | | | | | | | Check | Submittal | | | | | | | CHECK | Submittu | 1 | , | , | , | , | , | | |---|---|---|------|------|---|--|
 |
 |
 |
 | - Metal Buildings | | | | | | | | | |--|-------------------|-------------------|--|--|-------------|--------------|--------------|------------| | aseline This work is licensed under the Creative Commons | <u>s</u> | | Part 1 | - Attribute Description | Part 2 - Ex | ample Projec | t-Specific N | Milestones | | dditional License | | | | | Estimating | Estimating | LEED Cert. | LEED Cert | | ttribute | Data Type | Units - Imp. Unit | s - Metric Option Examples | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | uilding Width | Number | ft | | · | | | | | | illding Length | Number | ft | | | | | | | | ve Height | Number | ft | | | | | | | | oof Type | Text | | options: [monoslope, gable, other] | | | | | | | pof Slope | Number | #/12 | - | Inches per 12 inches (n/12) | | | | | | arget LOD | Text | π/12 | 100, 200, 300, 350, 400 | inches per 12 inches (ii/ 12) | | | | | | irrent LOD | Text | | 100, 200, 300, 350, 400 | | | | | | | imary Framing and Bracing | | | 200, 200, 200, 200, 100 | | | | | | | Structural steel materials | Text | | | ASTM Specification, Grade | | | | | | Frame base fixed | Logical | | T/F, 1/0 | | | | | | | Support Reactions | | | | Table of values | | | | | | Mark ID | | | | Mark identification that correlates with bill of material (i.e., piece mark) | | | | | | Member finish | Text | | options: [none, primer, galvanized, other] | | | | | | | Fastener materials | Text | | | ASTM Specification, Grade | | | | | | Fasterner finish | Text | | options: [black, zinc
electroplated, hot-dipped
galvanized, other] | | | | | | | econdary Framing | | | | | | | | | | Structural steel
materials | Text | | | ASTM Specification, Grade | | | | | | Finish | Text | | options: [none, primer, galvanized, other] | | | | | | | Mark ID | | | | Mark identification that correlates with bill of material (i.e., piece mark) | | | | | | Fastener materials | Text | | | ASTM Specification, Grade | | | | | | Fasterner finish | Text | | options: [black, zinc
electroplated, hot-dipped
galvanized, other] | | | | | | | adding and Exterior Trim | | | | | | | | | | Roof Panel System | Text | | options: [through-fastened, standing seam roof] | | | | | | | Wall Panel System | Text | | options: [concealed fastener, through-fastened] | | | | | | | Roof Panel Materials | Text | | | ASTM Specification, Grade, thickness, finish, and color | | | | | | Wall Panel Materials | Text | | | ASTM Specification, Grade, thickness, finish, and color | | | | | | Installation details | Text | | | Panel laps, crimping, etc. Fastener spacing and edge distance, etc. | | | | | | Mark ID | | | | Mark identification that correlates with bill of material (i.e., piece mark) | | | | | | Fastener materials | Text | | | ASTM Specification, Grade | | | | | | Fasterner finish | Text | | options: [black, zinc
electroplated, hot-dipped
galvanized, other] | | | | | | | Caulk/mastic installation details | Text | | | field-installed weather-tightness materials and installation instructions | | | | | | SC Shape Type & Size | Text | | options: [specific "HSS | | | | | | | reproofed | Logical | | 6x6x1/4"]
T/F, 1/0 | | | | | | | eprootea
eight in pounds/foot | Number | | 177, 170 | | | | | | | TM Material Grade | Text | Text | options: [A992, etc] | | | | | | | Pating | Text | Text | options: [galvanized, painted for exterior | | | | | | | rehitantural Evace of Chrystural Charl | Logical | | exposure, etc] | | | | | | | chitectural Exposed Structural Steel | Logical
Number | | T/F, 1/0 | SequenceNumber | | | | | | ubrication Sequence Number nop Submittal Parameters | number | | | ρεφαεποει να πιμ ε ι
Λ | | | | | | Date - Issued For Construction | Date Time | | | {DateIFC} | | | | | | Date - Permitted | Date Time | | {DatePermitted} | | | |---|-----------|--|--------------------------|--|--| | Date - received for Shop Detailing | Date Time | | {DateReceivedForShopDet} | | | | Date - Detailing Submitted for EOR review \ Out For Approva | Date Time | | {DateOutForApproval} | | | | Date - Final Erection Drawings Approved for Fab | Date Time | | {DateFinalForFab} | | | | Date - Fabrication Start | Date Time | | {DateFabStart} | | | | Date - Fabrication End | Date Time | | {DateFabEnd} | | | | Date - Fabrication Shipped | Date Time | | {DateFabShip} | | | | Date - Fabrication Received | Date Time | | {DateFabReceived} | | | | Date - Erection | Date Time | | {DateErected} | | | | Date - Inspected | Date Time | | {DateInspected} | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | | | | |---|-----------|--------------------------------|---|--------------------------|---|----------------------|----------|---|------------|--|--|--|--| | Highway Bridge Steel | | | | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License | | Part 1 - Attribute Description | | | | | | Part 2 - Example Project-Specific Milestones Estimating Estimating LEED Cert. LEED Cert | | | | | | | Additional Attribution-NonCommercial 4.0 International License Attribute | Data Type | Units - Imp. Units - Metric | Option Examples | Commentary | | Estimating
Est. 1 | Bid Pkg. | Check | Submittal | | | | | | AISC Shape Type & Size | Text | | options: [specific "HSS 6x6x1/4"] | Commentary | | LSt. I | Did Fkg. | CHECK | Subilittai | | | | | | Fireproofed | Logical | | T/F, 1/0 | | | | | | | | | | | | Weight in pounds/foot | Number | | | | | | | | | | | | | | ASTM Material Grade | Text | | options: [A992, etc] | | | | | | | | | | | | Target LOD | Text | | 100, 200, 300, 350, 400 | | | | | | | | | | | | Current LOD | Text | | 100, 200, 300, 350, 400 | | | | | | | | | | | | Coating | Text | | options: [galvanized,
painted for exterior
exposure, etc] | | | | | | | | | | | | Architectural Exposed Structural Steel | Logical | | T/F, 1/0 | | | | | | | | | | | | Fabrication Sequence Number | Number | | | SequenceNumber | | | | | | | | | | | Shop Submittal Parameters | | | | {} | | | | | | | | | | | Date - Issued For Construction | Date Time | | | {DateIFC} | | | | | | | | | | | Date - Permitted | Date Time | | | {DatePermitted} | | | | | | | | | | | Date - received for Shop Detailing | Date Time | | | {DateReceivedForShopDet} | | | | | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approval (OF | Date Time | | | {DateOutForApproval} | | | | | | | | | | | Date - Final Erection Drawings Approved for Fab | Date Time | | | {DateFinalForFab} | | | | | | | | | | | Date - Fabrication Start | Date Time | | · | {DateFabStart} | · | | | | | | | | | | Date - Fabrication End | Date Time | | | {DateFabEnd} | | | | | | | | | | | Date - Fabrication Shipped | Date Time | | | {DateFabShip} | | | | | | | | | | | Date - Fabrication Received | Date Time | | | {DateFabReceived} | | | | | | | | | | | Date - Erection | Date Time | | | {DateErected} | | | | | | | | | | | Date - Inspected | Date Time | | | {DateInspected} | | | | | | | | | | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | |--|-----------|-----------------------------|---|--|--------|-------------------|------------|-------------------|------------------|--| | Railroad Bridge Steel | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons | | | | Part 2 - Example Project-Specific Milestones | | | | | | | | Additional Attribution-NonCommercial 4.0 International License | | | | | | Estimating | Estimating | LEED Cert. | LEED Cert | | | Attribute | Data Type | Units - Imp. Units - Metric | Option Examples | Comm | entary | Est. 1 | Bid Pkg. | Check | Submittal | | | AISC Shape Type & Size | Text | | options: [specific "HSS
6x6x1/4"] | | | | | | | | | Fireproofed | Logical | | T/F, 1/0 | | | | | | | | | Weight in pounds/foot | Number | | | | | | | | | | | ASTM Material Grade | Text | | options: [A992, etc] | | | | | | | | | Target LOD | Text | | 100, 200, 300, 350, 400 | | | | | | | | | Current LOD | Text | | 100, 200, 300, 350, 400 | | | | | | | | | Coating | Text | | options: [galvanized,
painted for exterior
exposure, etc] | | | | | | | | | Architectural Exposed Structural Steel | Logical | | T/F, 1/0 | | | | | | | | | Fabrication Sequence Number | Number | | | SequenceNumber | | | | | | | | Shop Submittal Parameters | | | | {} | | | | | | | | Date - Issued For Construction | Date Time | | | {DateIFC} | | | | | | | | Date - Permitted | Date Time | | | {DatePermitted} | | | | | | | | Date - received for Shop Detailing | Date Time | | | {DateReceivedForShopDet} | | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approval (OF | Date Time | | | {DateOutForApproval} | | | | | | | | Date - Final Erection Drawings Approved for Fab | Date Time | | | {DateFinalForFab} | | | | | | | | Date - Fabrication Start | Date Time | | | {DateFabStart} | | | | | | | | Date - Fabrication End | Date Time | | | {DateFabEnd} | | | | | | | | Date - Fabrication Shipped | Date Time | | | {DateFabShip} | | | | | | | | Date - Fabrication Received | Date Time | | | {DateFabReceived} | | | | | | | | Date - Erection | Date Time | | | {DateErected} | | | | | | | | Date - Inspected | Date Time | | | {DateInspected} | | | | | | | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | | |--|-----------|----------------|----------------|---|-----------------------------|------------|---------------|------------|-----------|--| | Bridge Concrete | | | | | | | | | | | | Baseline This work is licensed under the Creative Commons | | | | Part 1 | - Attribute Description | | cample Projec | | | | | Additional Attribution-NonCommercial 4.0 International | | | | | | Estimating | Estimating | LEED Cert. | LEED Cert | | | Attribute | Data Type | Units - Imp. l | Jnits - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | | Member Type | Text | | | (0) Foundation (1) Beam (2)
Column (3) Slab (4) Wall | | | | | | | | Concrete Compression Strength | | PSI | | | Example: 3000 PSI | | | | | | | Reinforcing Steel Flexture | | PSI | | | Example: 60,000 PSI | | | | | | | Reinforcing Steel Shear | | PSI | | | Example: 60,000 PSI | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | Member Casting Number | | | | | | | | | | | | Exterior Exposure | Logical | | | T/F, 1/0 | | | | | | | | Shop Submittal Parameters | | | | | | | | | | | | Date - Issued For Construction | Date Time | | | | DateIFC | | | | | | | Date - Permitted | Date Time | | | | DatePermitted | | | | | | | Date - received for Shop Detailing | Date Time | | | | DateReceivedForShopDet | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | Date
Time | | | | DateOutForApproval | | | | | | | Date - Final Erection Drawings Approved for Fab | Date Time | | | | DateFinalForFab | | | | | | | Date - Fabrication Start | Date Time | | | | DateFabStart | | | | | | | Date - Fabrication End | Date Time | | | | DateFabEnd | | | | | | | Date - Fabrication Shipped | Date Time | | | | DateFabShip | | | | | | | Date - Fabrication Received | Date Time | | | | DateFabReceived | | | | | | | Date - Erection | Date Time | | | | DateErected | | | | | | | Date - Inspected | Date Time | | | | DateInspected | | | | | | | Finish | Character | | | A,B,C per ACI 117 | Specify by face of concrete | | | | | | | BIMForum LOD Specification 2020 Part II | | | | | | | | | | |---|-----------|--------------|----------------|---|-----------------------------|------------|----------------------------|-------|-----------| | Highway Bridge Precast | | | | | | | | | | | Baseline Additional Attribution-NonCommercial 4.0 International | | | | Part 1 | - Attribute Description | Part 2 - I | xample Proje
Estimating | | | | | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | Est. 1 | Bid Pkg. | Check | Submittal | | Member Type | Text | | | (0) Foundation (1) Beam (2)
Column (3) Slab (4) Wall | , | | | | | | Concrete Compression Strength | | PSI | | | Example: 3000 PSI | | | | | | Reinforcing Steel Flexture | | PSI | | | Example: 60,000 PSI | | | | | | Reinforcing Steel Shear | | PSI | | | Example: 60,000 PSI | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | Member Casting Number | | | | | | | | | | | Exterior Exposure | Logical | | | T/F, 1/0 | | | | | | | Shop Submittal Parameters | | | | | | | | | | | Date - Issued For Construction | Date Time | | | | DateIFC | | | | | | Date - Permitted | Date Time | | | | DatePermitted | | | | | | Date - received for Shop Detailing | Date Time | | | | DateReceivedForShopDet | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | Date Time | | | | DateOutForApproval | | | | | | Date - Final Erection Drawings Approved for Fab | Date Time | | | | DateFinalForFab | | | | | | Date - Fabrication Start | Date Time | | | | DateFabStart | | | | | | Date - Fabrication End | Date Time | | | | DateFabEnd | | | | | | Date - Fabrication Shipped | Date Time | | | | DateFabShip | | | | | | Date - Fabrication Received | Date Time | | | | DateFabReceived | | | | | | Date - Erection | Date Time | | | | DateErected | | | | | | Date - Inspected | Date Time | | | | DateInspected | | | | | | Finish | Character | | | A,B,C per ACI 117 | Specify by face of concrete | | | | | | BIMForum LOD Specification 2020 Part II | | | | | | _ | | | | | | | | |--|--------------------------------|--------------|-----------------------|---|-----------------------------|---|--------|---|-------|-----------|---|--|--| | Railroad Bridge Precast | | | | | | _ | | | | | | | | | Baseline Additional Additional Additional | Part 1 - Attribute Description | | | | | | | Part 2 - Example Project-Specific Milestones Estimating Estimating LEED Cert. LEED Cert | | | | | | | Attribute | Data Type | Units - Imp. | Units - Metric | Option Examples | Commentary | | Est. 1 | Bid Pkg. | Check | Submittal | | | | | Member Type | Number | | | (0) Foundation (1) Beam (2)
Column (3) Slab (4) Wall | | | | | | | | | | | Concrete Compression Strength | Number | PSI | | | Example: 3000 PSI | | | | | | | | | | Reinforcing Steel Flexture | Number | PSI | | | Example: 60,000 PSI | | | | | | | | | | Reinforcing Steel Shear | Number | PSI | | | Example: 60,000 PSI | | | | | | | | | | Target LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | ĺ | | | | Current LOD | Text | | | 100, 200, 300, 350, 400 | | | | | | | | | | | Member Casting Number | | | | | | | | | | | | | | | Exterior Exposure | Logical | | | T/F, 1/0 | | | | | | | ĺ | | | | Shop Submittal Parameters | | | | | | | | | | | ĺ | | | | Date - Issued For Construction | Date Time | | | | DateIFC | | | | | | ĺ | | | | Date - Permitted | Date Time | | | | DatePermitted | | | | | | ĺ | | | | Date - received for Shop Detailing | Date Time | | | | DateReceivedForShopDet | | | | | | | | | | Date - Detailing Submitted for EOR review \ Out For Approv | Date Time | | | | DateOutForApproval | | | | | | L | | | | Date - Final Erection Drawings Approved for Fab | Date Time | | | | DateFinalForFab | | | | | | | | | | Date - Fabrication Start | Date Time | | | | DateFabStart | | | | | | L | | | | Date - Fabrication End | Date Time | | | | DateFabEnd | | | | | | L | | | | Date - Fabrication Shipped | Date Time | | | | DateFabShip | | | | | | | | | | Date - Fabrication Received | Date Time | | | | DateFabReceived | | | | | | | | | | Date - Erection | Date Time | | | | DateErected | | | | | | | | | | Date - Inspected | Date Time | | | | DateInspected | | | | | | | | | | Finish | Text | | | A,B,C per ACI 117 | Specify by face of concrete | | | - | | | 1 | | |